Spring Web Flow Reference Guide

Keith Donald
Erwin Vervaet
Jeremy Grelle
Scott Andrews

Rossen Stoyanchev

Version 2.0.9
Published

Copies of this document may be made for your own use and for distribution to others, provided that you do not
charge any fee for such copies and further provided that each copy contains this Copyright Notice, whether
distributed in print or electronically.

Table of Contents

== o USSP vii
I 1 gL 0o L1 o 1 o o USRS PUPRPRRN 1
1.1. What thiS QUITE COVEIS ..ottt e 1
1.2. What Web FIOW reqUITES O UMc.coiuiiiieriesiiriieeeeeee et s 1
1.3. WhEre t0 gt SUPPOIT «..cuveeitiiiieieeeeie ettt 1
1.4. Where to follow develOpPMENTooiiiiiieee e 1
1.5. How to access Web Flow artifacts from Maven Centralccccooeveveninenennne 1
1.6. How to access Web Flow artifacts from the SpringSource Bundle Repository 2
1.7. How to access Nightly DUIlASccooiiiiiiii e 4
2. DEFINING FIOWS ...ttt bbbttt nb e naeens 7
P20 W 1 g (0o [0 Tox i o] IO USRS 7
2. 2. WL IS ATIOW? <ot nre s 7
2.3. What isthe makeup of atypical flOW?ccceririiieieereeee s 8
2.4. How are flows authored? ..o 8
2.5. Essential 1anguage El@MENS ..o 9
2.6 ACLIONS ...ttt ettt bbbttt a et b e e ne e 10
2.7. INpUt/OULPUL MBPPING +..verveveeiieiieiesie sttt st se e e 12
2.8, VATADIES ... 14
2.9. CalliNg SUDFIOWSc.eiiiieiieiceeeie et 14
3. EXpression Language (EL) ...o..coeceeeie et 17
G300 I g 10T [0 Tox i o] IO USSR 17
3.2. Supported EL implementationsc.cooeveierereererie s 17
R I = I o5 7= o | [YRS 17
34 EL USBOE ...ttt ettt b e nn e 17
3.5. Special EL Variablesccooiiiiiiieseee e 19
3.6. Scope searching @lgorthm ..o e 21
4. RENUENTNG VIBWS ...ttt sttt b sae sttt b e et bbbt et e e s e e e b e b neeenis 23
vt I 1 oo L8 o1 o o ST 23
4.2. DEfINING VIBW SEBLEScueiiiieieie ettt s 23
4.3. SPeCifying VIEW FdENTITIENS ..o 23
A4, VIBW SCOPE ...eeveeetirieeueeseeeestessestestessessesaesae st eseseesbesbesbesbeese e bt ese e st e s e naeseenbeneesne e 24
4.5. EXECULING rENEr 8CHIONSccovuiierieitiriieieeeeee et s 25
4.6. BINAING t0 A MOUE!oouiiiiieiee e e 25
4.7. Performing tyPe CONVEISIONccoieruirierereeeeseeseesiessessessessessessesesssssaessesseseesseses 26
4.8. SUPPressiNg DINAINGovoiiii e 27
4.9. Specifying bindings eXpliCitly ... 27
4.10. Validating amMOCE!cooiiiiiierieeeee e 28
4.11. SUPPresSiNg ValTAaLiONooeieieiiiieeeeee e 30
4.12. EXECULING VIEW TraNSITIONSocveiieriirierieeeeee et 31
4.13. WOrking With MESSAgEScccoieiiriirieeeceee e 32
4.14. DiSPlaying POPUPS ..c.eceueeeeieriesiesiestesiesseeeseessessessessessessessessesssessessessessessessessenes 34
4.15. VIiew DACKIraCKINGcooveiveieriiiesiesiesieee ettt 34
5. EXECULING @CLIONS ..ottt sttt e bbb nne s 35
o300 N g (0o [0 Tox i o] ISR 35

Version 2.0.9

5.2. DEfiNiNG @CtION SEALESocueiuiiieieiesie et 35

5.3. DEfiNiNg AECISION SLALEScoceiieieieriesie et 35
5.4. Action outCOmME eVeNt MAPPINGScoververreriereriereeriessesiessesressessesseeeeseessesseseesseses 36
5.5. ACtion iMPIEMENTALIONScooieieiirieriesie e 36
5.6. ACHON EXCEPLIONSveviieitiiiieieee ettt bbbt a et e sne e 37
5.7. Other Action execution eXaMPIES ... e 38
6. FIOWw Managed PErSISEENCEooiiiriiieieiereeeee et 43
(G20 W g1 0o 0o (o] o ISP 43
6.2. FlowScoped PersistenCeCONIEXLccoerererieieriesie e 43
7. SECUNNG FIOWS ...ttt bbbt b b e 45
4% W 111 0o 8o (o] o SRR 45
7.2. HOW dO | SECUrE @TIOW? ... s 45
7.3. The SECUred BlEMENLcoiiiiiiee e 45
7.4. The SecurityFlOWEXECULIONLISIENEYcoueiiiieiiee s 46
7.5. Configuring SPring SECUNLYc.coeririrenirieieiee e 47
8. FIOW INNENTANCE ..ot ettt e b 49
8. L. INLFOAUCTION ...ttt bbbttt 49
8.2. Isflow inheritance like Java inheritanCe?ccoviiienineneeee e 49
8.3. Types of FIOW INNENtanCe ..o 49
8.4. ADSIIACE FIOWS ...ttt 50
8.5. Inheritance AlGOITNMooiiee e 50
O. SYSLEM SELUP -ttt n e e b e na e n e ne s 53
LS8 g (0T [0 Tox i o] ISR 53
9.2. WEDFIOW-CONFIGXST ..ttt sttt 53
9.3. BasiC SysStem CONFIGUIALIONccueiuerieriirieriesieseee e 53
O.4. TlOW-TEQISITY OPLIONScveiiriieiieiieie ettt s 54
O.5. TlOW-EXECULOr OPLIONSoviiieiieiieierie sttt 57
10. SPring MV C INEEGIAiONccuevueiuieieeieieie ettt bbb 59
05 g 0o (0ot o] o TSSO PPPRPRPRN 59
10.2. Configuring WED. XMoviiiiiiesereeeeee e 59
10.3. DiSpatChing tO fIOWScoiiiiierieseeeeeeee e e 59
10.4. Implementing custom FIOWHAaNAIEN'Sccoviiiiiiinenieeeeee e 60
10.5. VIEW RESOIULION ..ottt 63
10.6. Signaling an event fromM @ VIBWcoceoieiiiirere e 63
11. Spring JavaScript QUICK REFEIENCEcccoeiiiiiieeree e 65
00 g 0o o o o USSP PPPRPRORN 65
11.2. Serving JavasCript RESOUICESccerererieieiesie sttt sresaeas 65
11.3. Including Spring JavasCript iN @Page ..o 65
11.4. Spring JavasCript DECOIALIONSccuerueruerieieiesie sttt s sre e 66
11.5. Handling AjaX REQUESESccoiiririiiirieeieee ettt s 67
(N S 01 =e | = (o] o USSP 71
V2% W g 1 0o (0ot o] o TSSO PPPRPRORN 71
12.2. Spring-centric Integration APProaChcceeeierenieneneneeee e 71
12.3. Configuring WED. XMoviiiiiiiseseeee e e 72
12.4. Configuring Web Flow to render JSF VIEWScccooeriiinereneiesee e 73
12.5. Configuring faces-CoNfIg. XMc.ooiiiriiiiieere e 74
12.6. Replacing the JSF Managed Bean FaCilityccocovininininieieecc e 74
12.7. Handling JSF Events With Spring Web FIOW ... 76
12.8. Enhancing The User Experience With Rich Web FOrmscccocvvviienennene 80

v Spring Web Flow

12.9. Third-Party Component Library INtegrationc.ccocevvererierieienenene e 81

13. POITIE INTEGIALIONcueieeiiierieeeeee et bbbttt s 85
S 30 I g 0o (0ot [0 o USSP PPTORPRPRN 85
13.2. Configuring web.xml and portlet.Xml ... 85
13.3. CoNfigQUITNG SPIING ..coueeeiieiereriesie e sbe e 85
13.4. POITIEE VIBWS ...ttt s sbenae s 87
13.5. Portlet Modes and WINCAOW SEBLEScocueuerierierienerenesiesee e 87
13.6. Issuesin a Portlet ENVIFONMENTccccooeriiiiiriirieriesie e 88

14, TESUNG FIOWS ...t bbbt e e b e e 89
I g 0o [0 Tot o] o USSP PPPRPRPRN 89
14.2. Extending AbstractXmlFlOWEXeCUtiONTESESccoieviriririceeeee e 89
14.3. Specifying the path to the flIow tO tESEcoviiiiie e 89
14.4. Registering flow dependenCiescocoeeeienirese s 89
14.5. TeSting fFIOW SLAITUDcceoiveiiieriesiesieseee et s 90
14.6. Testing flow event handlingccocovriiiienee e 90
14.7. MOCKING @ SUDFIOW ... 90

15. UPGrading from 1.0 ...t b 93
G0 I g 100 (0ot [0 o TSSO PPN 93
15.2. Flow Definition LanQUAJEccceeererirerieieiesie sttt s 93
15.3. Webh FIOW CONFIQUIELIONccueiiiieiriiiiiniieieee et 9
15.4. New WED FIOW CONCEPLSocveviereerierieniieieieesie ettt sneas 96

A. Flow Definition Language 1.0 t0 2.0 M@PPINGScovveverierierenierienireeeeee e seeenes 99

Version 2.0.9

Vi

Spring Web Flow

Preface Vii

Preface

Many web applications require the same sequence of steps to execute in different contexts. Often
these sequences are merely components of alarger task the user istrying to accomplish. Such a
reusable sequenceis called aflow.

Consider atypical shopping cart application. User registration, login, and cart checkout are all
examples of flows that can be invoked from several placesin thistype of application.

Spring Web Flow is the module of Spring for implementing flows. The Web Flow engine plugs
into the Spring Web MV C platform and provides declarative flow definition language. This
reference guide shows you how to use and extend Spring Web Flow.

Version 2.0.9 vii

Viii Spring Web Flow

viii Preface

Introduction 1

1. Introduction

1.1. What this guide covers

This guide covers all aspects of Spring Web Flow. It covers implementing flows in end-user
applications and working with the feature set. It also covers extending the framework and the
overall architectural mode.

1.2. What Web Flow requires to run

Java 1.4 or higher
Spring 2.5.6 or higher

1.3. Where to get support

Professional from-the-source support on Spring Web Flow is available from SpringSource, the
company behind Spring, and Ervacon, operated by Web Flow project co-founder Erwin Vervaget

1.4. Where to follow development

Y ou can help make Web Flow best serve the needs of the Spring community by interacting with
developers at the Spring Community Forums.

Report bugs and influence the Web Flow project roadmap using the Spring Issue Tracker.

Subscribe to the Spring Community Portal for the latest Spring news and announcements.

Visit the Web Flow Project Home for more resources on the project.

1.5. How to access Web Flow artifacts from Maven
Central
Each jar in the Web Flow distribution is available in the Maven Central Repository. This allows

you to easily integrate Web Flow into your application if you are already using Maven as the
build system for your web development project.

To access Web Flow jars from Maven Central, declare the following dependencies in your pom:

Version 2.0.9

http://www.springsource.com
http://www.ervacon.com
http://forum.springframework.org
http://jira.springframework.org
http://www.springframework.org
http://www.springframework.org/webflow
http://repo1.maven.org/maven2/

2 Spring Web Flow

<dependency>
<groupl d>or g. spri ngf ramewor k. webf | ow</ gr oupl d>
<artifactld>spring-binding</artifactld>
<version>2.0.9. RELEASE</ ver si on>

</ dependency>

<dependency>
<groupl d>or g. spri ngf ramewor k. webf | ow</ gr oupl d>
<artifactld>spring-js</artifactld>
<versi on>2. 0. 9. RELEASE</ ver si on>

</ dependency>

<dependency>
<groupl d>or g. spri ngf ramewor k. webf | ow</ gr oupl d>
<artifactld>spring-webflow/artifactld>
<version>2.0.9. RELEASE</ ver si on>

</ dependency>

And if using JavaServerFaces:

<dependency>
<groupl d>or g. spri ngf ramewor k. webf | ow</ gr oupl d>
<artifactld>spring-faces</artifactld>
<version>2.0.9. RELEASE</ ver si on>

</ dependency>

1.6. How to access Web Flow artifacts from the
SpringSource Bundle Repository

Each jar in the Web Flow distribution is also available in the SpringSource Enterprise Bundle
Repository. Use this repository when you wish to run Spring Web Flow in an OSGi environment
such as the SpringSource dm Server. All jars obtained from the SpringSource Bundle Repository
are OSGi-ready.

Accessing Web Flow bundles with Maven
To access bundles using Maven, add the following repositories to your Maven pom:

<repository>
<i d>com spri ngsource. reposi tory. bundl es. rel ease</i d>
<nanme>Spri ngSource Enterprise Bundl e Repository - SpringSource Rel eases</nane>
<url|>http://repository.springsource.conl maven/ bundl es/ rel ease</ ur| >
</repository>

<r eposi tory>
<i d>com springsource. repository. bundl es. external </id>
<nanme>SpringSour ce Enterprise Bundl e Repository - External Rel eases</nane>
<url| >http://repository. springsource.conl maven/ bundl es/ external </ ur| >

</ repository>

Then declare the following dependencies:

<dependency>
<groupl d>or g. spri ngf ramewor k. webf | ow</ gr oupl d>
<artifactld>org. springfranmework. binding</artifactld>
<version>2.0.9. RELEASE</ ver si on>

</ dependency>

<dependency>

2 Introduction

http://www.springsource.com/repository
http://www.springsource.com/repository
http://www.springsource.com/products/dmserver

I ntroduction

<groupl d>or g. spri ngf ramewor k. webf | ow</ gr oupl d>
<artifactld>org.springframework.js</artifact!d>
<versi on>2. 0. 9. RELEASE</ ver si on>

</ dependency>

<dependency>
<gr oupl d>or g. spri ngf ramewor k. webf | ow</ gr oupl d>
<artifactld>org. springframework.webflow/artifactld>
<version>2.0.9. RELEASE</ ver si on>

</ dependency>

And if using JavaServerFaces:

<dependency>
<gr oupl d>or g. spri ngf ramewor k. webf | ow</ gr oupl d>
<artifactl|d>org.springframework.faces</artifact|d>
<ver si on>2. 0. 9. RELEASE</ ver si on>

</ dependency>

Note the Web Flow artifacts in the SpringSource Bundle Repository are indexed under different
ids because their transitive dependencies are different than the Maven Central artifacts. The
difference isthe transitive jars such as commons-logging have been patched by SpringSource to
add the metadata required to make them OSGi-compatible.

Accessing Web Flow bundles with lvy
To access bundles using Ivy, add the following repositories to your vy config:

<ur| nane="com springsource.repository. bundl es. rel ease">
<ivy pattern="http://repository.springsource.coniivy/bundl es/rel ease/
[organi sation]/[nodul e]/[revision]/[artifact]-[revision].[ext]" />
<artifact pattern="http://repository.springsource.coniivy/bundles/rel ease/
[organi sation]/[nodule]/[revision]/[artifact]-[revision].[ext]" />
</url>

<ur| nane="com springsource. repository. bundl es. external ">
<ivy pattern="http://repository.springsource.coniivy/bundl es/external/
[organi sation]/[nodul e]/[revision]/[artifact]-[revision].[ext]" />
<artifact pattern="http://repository.springsource.coniivy/bundl es/external/
[organi sation]/[nodule]/[revision]/[artifact]-[revision].[ext]" />
</url>

Then declare the following dependencies:

<dependency org="org. spri ngfranmewor k. webf| ow' nanme="org. spri ngfranmewor k. bi ndi ng"
rev="2.0.9. RELEASE" conf="conpile->runtinme" />

<dependency org="org. springfranmewor k. webfl ow' nanme="org. springfranmework.js"
rev="2.0.9. RELEASE" conf="conpile->runtinme" />

<dependency org="org. springfranmewor k. webf| ow' nanme="org. spri ngf ramewor k. webf | ow'
rev="2.0.9. RELEASE" conf="conpile->runtinme" />

And if using JavaServerFaces:

<dependency org="org. springfranmewor k. webf| ow' nanme="org. spri ngfranmework. f aces"
rev="2.0.9. RELEASE" conf="conpile->runtinme" />

Accessing the dm Server Web Flow library

Version 2.0.9

4 Spring Web Flow

A dm Server library for Web Flow is aso available if you are deploying to adm Server
environment. Import this library in your MANIFEST.mf to automatically import all Web Flow
bundles. To access the library, add the following repository:

<r eposi tory>
<i d>com springsource.repository.libraries.rel ease</id>
<nane>SpringSource Enterprise Bundle Repository - SpringSource Library Rel eases</nane>
<url| >http://repository. springsource.conl maven/libraries/rel ease</url>

</ repository>

And declare the following dependency:

<dependency>
<groupl d>or g. spri ngf ramewor k. webf | ow</ gr oupl d>
<artifactld>org.springfranmework. webfl owlibrary</artifact!d>
<type>libd</type>
<version>2.0.9. RELEASE</ ver si on>

</ dependency>

1.7. How to access nightly builds

Nightly snapshots of Web Flow development branches are available using Maven, and
distribution zips are also available for download. These snapshot builds are useful for testing out
fixes you depend on in advance of the next release, and provide a convenient way for you to
provide feedback about whether afix meets your needs.

If using Maven, you may obtain snapshots from either the SpringSource-managed Maven
Central-compatible repository or the SpringSource Enterprise Bundle Repository. Use the Maven
Central -compatible snapshot repository when your project obtains its other open source
dependencies from Maven Central. Use the Spring Source Enterprise Bundle Snapshot
Repository when you wish to run Web Flow in an OSGi environment.

Accessing snapshots from the Maven-central compatible
repository

Add the following repository your pom:

<reposi tory>
<i d>or g. spri ngsour ce. maven. snapshot </ i d>
<nanme>Spri ngSour ce Maven Central - conpati bl e Snapshot Repository</nane>
<url>http:// maven. spri ngf ranmewor k. or g/ snapshot </ ur | >

</repository>

Then declare the following dependencies:

<dependency>
<gr oupl d>or g. spri ngf ramewor k. webf | ow</ gr oupl d>
<artifactld>spring-binding</artifactld>
<version>x.y.z. BUI LD- SNAPSHOT</ ver si on>

</ dependency>

<dependency>
<groupl d>or g. spri ngf ramewor k. webf | ow</ gr oupl d>

4 Introduction

http://s3browse.com/explore/maven.springframework.org/snapshot/org/springframework/webflow
http://s3browse.com/explore/maven.springframework.org/snapshot/org/springframework/webflow
http://s3browse.com/explore/repository.springsource.com/maven/bundles/snapshot/org/springframework/webflow
http://s3browse.com/explore/repository.springsource.com/maven/bundles/snapshot/org/springframework/webflow

I ntroduction

<artifactld>spring-js</artifactl|d>
<version>x.y. z. BU LD- SNAPSHOT</ ver si on>
</ dependency>

<dependency>
<groupl d>or g. spri ngf ramewor k. webf | ow</ gr oupl d>
<artifactl|d>spring-webflow/artifactld>
<version>x.y. z. BU LD SNAPSHOT</ ver si on>

</ dependency>

And if using JavaServerFaces:

<dependency>
<groupl d>or g. spri ngf ramewor k. webf | ow</ gr oup! d>
<artifactld>spring-faces</artifactld>
<version>x.y. z. BU LD SNAPSHOT</ ver si on>

</ dependency>

Accessing snapshots from the SpringSource Enterprise Bundle
Repository

Add the following repository your pom:

<repository>

<i d>com springsource. reposi tory. bundl es. snapshot </ i d>

<nanme>Spri ngSource Enterprise Bundl e Snapshot Repository</nane>

<url >http://repository. springsource.conl maven/ bundl es/ snapshot </ ur| >
</repository>

Then declare the following dependencies:

<dependency>
<groupl d>or g. spri ngf ramewor k. webf | ow</ gr oupl d>
<artifactld>org. springframework. binding</artifactld>
<version>x.y. z. BU LD SNAPSHOT</ ver si on>

</ dependency>

<dependency>
<groupl d>or g. spri ngf ramewor k. webf | ow</ gr oupl d>
<artifactld>org.springframework.js</artifactld>
<versi on>x.y. z. BU LD- SNAPSHOT</ ver si on>

</ dependency>

<dependency>
<groupl d>or g. spri ngf ramewor k. webf | ow</ gr oup! d>
<artifactl|d>org. springframework. webfl ow</artifactld>
<version>x.y. z. BUl LD- SNAPSHOT</ ver si on>

</ dependency>

And if using JavaServerFaces.

<dependency>
<groupl d>or g. spri ngf ramewor k. webf | ow</ gr oupl d>
<artifactld>org.springframework.faces</artifactld>
<version>x.y.z. BU LD- SNAPSHOT</ ver si on>

</ dependency>

Accessing snapshot distribution archives

Get the snapshot zip with the most recent CI build number from the Web Flow snapshot

Version 2.0.9

6 Spring Web Flow

download area.

6 Introduction

http://static.springframework.org/downloads/nightly/snapshot-download.php?project=SWF

Defining Flows 7

2. Defining Flows

2.1. Introduction

This chapter begins the Users Section. It shows how to implement flows using the flow
definition language. By the end of this chapter you should have a good understanding of
language constructs, and be capable of authoring a flow definition.

2.2. What is a flow?

A flow encapsulates a reusable sequence of steps that can execute in different contexts. Below is
a Garrett Information Architecture diagram illustrating a reference to a flow that encapsulates the
steps of a hotel booking process:

- M
Hatels Site

- SearchCriterla

l

SearchResults

securad i

BookHotE

[EES U U -

Version 2.0.9 7

http://www.jjg.net/ia/visvocab/

8 Spring Web Flow

Site Map illustrating areference to aflow

2.3. What is the makeup of a typical flow?

In Spring Web Flow, aflow consists of a series of steps called "states’. Entering a state typically
resultsin aview being displayed to the user. On that view, user events occur that are handled by
the state. These events can trigger transitions to other states which result in view navigations.

The example below shows the structure of the book hotel flow referenced in the previous
diagram:

,f ~,
ook Hotel

entry polnt: o BookingDetalls
SearchBesu ks

o l

BookingContirmation

Y
| |

exit point:
HotelSearch

Flow diagram

2.4. How are flows authored?

Flows are authored by web application developers using a simple XM L-based flow definition
language. The next steps of this guide will walk you through the elements of this language.

8 Defining Flows

Defining Flows

2.5. Essential language elements

flow
Every flow begins with the following root element:

<?xm version="1.0" encodi ng="UTF-8"?>
<flow xm ns="http://ww. springfranmewor k. or g/ schema/ webf | ow'
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xsi : schemaLocati on="http://ww. spri ngframewor k. or g/ schema/ webf | ow
http://ww. springfranework. or g/ schena/ webf | ow spri ng-webf| ow 2. 0. xsd" >

</ fl ow>

All states of the flow are defined within this element. The first state defined becomes the flow's
starting point.

view-state
Usethevi ew st at e element to define a step of the flow that renders a view:

<vi ew state id="enterBooki ngDetails" />

By convention, a view-state mapsitsid to a view template in the directory where the flow is
located. For example, the state above might render

/ VEEB- | NF/ hot el s/ booki ng/ ent er Booki ngDet ai | s. xht nl if the flow itself was
located in the/ VEEB- | NF/ hot el s/ booki ng directory.

transition
Usethet r ansi ti on eement to handle events that occur within a state:

<vi ew state id="enterBooki ngDetails">
<transition on="submt" to="revi ewBooki ng" />
</ vi ew st at e>

These transitions drive view navigations.

end-state
Usetheend- st at e element to define aflow outcome:

<end- state id="booki ngCancel |l ed" />

Version 2.0.9

10 Spring Web Flow

When aflow transitions to a end-state it terminates and the outcome is returned.

Checkpoint: Essential language elements

With the three elementsvi ew st at e, t r ansi ti on, and end- st at e, you can quickly
express your view navigation logic. Teams often do this before adding flow behaviors so they
can focus on devel oping the user interface of the application with end usersfirst. Below isa
sample flow that implementsits view navigation logic using these elements:

<fl ow xm ns="http://ww. spri ngfranmework. or g/ schema/ webf | ow"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xsi :schemaLocati on="http://ww. spri ngframework. or g/ schema/ webf | ow
http: //ww. spri ngfranewor k. or g/ schena/ webf | ow spri ng-webf | ow 2. 0. xsd" >
<vi ew state id="enterBooki ngDetails">
<transition on="submt" to="revi ewBooki ng" />
</ vi ew st at e>
<vi ew state id="revi ewBooki ng">
<transition on="confirm' to="booki ngConfirnmed" />
<transition on="revise" to="enterBookingDetails" />
<transition on="cancel" to="booki ngCancelled" />
</vi ew st at e>
<end- state id="booki ngConfirnmed" />
<end- st ate id="booki ngCancel |l ed" />

</flow>

2.6. Actions

Most flows need to express more than just view navigation logic. Typically they also need to
invoke business services of the application or other actions.

Within aflow, there are severa points where you can execute actions. These points are:

* Onflow start

* On state entry

* Onview render

* On transition execution

* On state exit

* Onflow end

Actions are defined using a concise expression language. Spring Web Flow uses the Unified EL

by default. The next few sections will cover the essential |language elements for defining actions.

evaluate

10 Defining Flows

Defining Flows 11

The action element you will use most often istheeval uat e element. Usetheeval uat e
element to evaluate an expression at a point within your flow. With this single tag you can
invoke methods on Spring beans or any other flow variable. For example:

<eval uat e expressi on="entityManager. persi st (booking)" />

Assigning an evaluate result

If the expression returns a value, that value can be saved in the flow's data model called
f | owScope:

<eval uat e expressi on="booki ngService.findHotel s(searchCriteria)" result="fl owScope. hotel s" />

Converting an evaluate result

If the expression returns a value that may need to be converted, specify the desired type using the
resul t-type attribute:

<eval uat e expressi on="booki ngServi ce.findHotel s(searchCriteria)" result="fl owScope. hot el s"
resul t-type="dat aMbdel "/ >

Checkpoint: flow actions
Now review the sample booking flow with actions added:

<flow xm ns="http://wmn. springfranmewor k. or g/ schema/ webf | ow'
xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schena- i nst ance"
xsi : schemaLocati on="http://ww. spri ngframewor k. or g/ schema/ webf | ow
http://ww. springfranmewor k. or g/ schema/ webf | ow spri ng-webf | ow 2. 0. xsd" >

<input name="hotel I d" />
<on-start>
<eval uat e expressi on="booki ngServi ce. creat eBooki ng(hotel I d, currentUser.nane)"
resul t ="f| owScope. booki ng" />
</on-start>
<vi ew state id="enterBooki ngDetails">
<transition on="submt" to="revi ewBooking" />
</ vi ew st at e>
<view state id="revi ewBooki ng">
<transition on="confirm' to="booki ngConfirnmed" />
<transition on="revise" to="enterBookingDetails" />
<transition on="cancel" to="booki ngCancelled" />
</vi ew st at e>
<end- state id="booki ngConfirmed" />
<end- state id="booki ngCancel | ed" />

</flow>

Thisflow now creates a Booking object in flow scope when it starts. The id of the hotel to book
is obtained from a flow input attribute.

Version 2.0.9 11

12 Spring Web Flow

2.7. Input/Output Mapping

Each flow has a well-defined input/output contract. Flows can be passed input attributes when
they start, and can return output attributes when they end. In this respect, caling aflow is
conceptually similar to calling a method with the following signature:

FI owQut cone fl ow d(Map<String, Object> inputAttributes);

... where aFl owQut cone hasthe following signature:

public interface FlowQutcone {
public String getNane();
public Map<String, Object> getQutputAttributes();

}

input
Usethei nput element to declare aflow input attribute:

<input nanme="hotel ld" />

Input values are saved in flow scope under the name of the attribute. For example, the input
above would be saved under the name hot el | d.

Declaring an input type

Usethet ype attribute to declare the input attribute's type:
<input name="hotel | d" type="long" />
If an input value does not match the declared type, atype conversion will be attempted.

Assigning an input value

Usetheval ue attribute to specify an expression to assign the input value to:

<input name="hotel | d" val ue="fl owScope. nyPar anet er Obj ect . hotel | d" />

If the expression's value type can be determined, that metadata will be used for type coersion if
not ype attributeis specified.

Marking an input as required

12 Defining Flows

Defining Flows 13

Usether equi r ed attribute to enforce the input is not null or empty:

<input nane="hotel | d" type="long" val ue="fl owScope. hotel | d" required="true" />

output

Usethe out put element to declare aflow output attribute. Output attributes are declared within
end-states that represent specific flow outcomes.

<end- state id="booki ngConfirnmed">
<out put name="booki ngld" />
</ end- st at e>

Output values are obtained from flow scope under the name of the attribute. For example, the
output above would be assigned the value of the booki ngl d variable.

Specifying the source of an output value

Usetheval ue attribute to denote a specific output value expression:

<out put nanme="confirmati onNunber" val ue="booki ng. confirmati onNunber" />

Checkpoint: input/output mapping
Now review the sample booking flow with input/output mapping:

<flow xm ns="http://ww. spri ngframework. or g/ schema/ webf | ow'
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xsi :schemaLocati on="http://ww. spri ngframewor k. or g/ schema/ webf | ow
http://ww. springfranmewor k. or g/ schema/ webf | ow spri ng-webf | ow 2. 0. xsd" >

<i nput name="hotel | d* />

<on-start>
<eval uat e expressi on="booki ngServi ce. creat eBooki ng(hotel I d, currentUser.nane)"
resul t ="fl owScope. booki ng" />
</on-start>

<vi ew state id="enterBooki ngDetails">
<transition on="submt" to="revi ewBooki ng" />
</ vi ew st at e>

<view state id="revi enBooki ng">
<transition on="confirm' to="booki ngConfirnmed" />
<transition on="revise" to="enterBookingDetails" />
<transition on="cancel" to="booki ngCancelled" />

</ vi ew st at e>

<end- state id="booki ngConfirnmed" >
<out put nane="booki ngl d" val ue="booking.id"/>

</ end- st at e>

<end-state id="booki ngCancel | ed" />

</ fl ow>

The flow now acceptsahot el | d input attribute and returnsabooki ngl d output attribute

Version 2.0.9 13

14 Spring Web Flow

when a new booking is confirmed.

2.8. Variables

A flow may declare one or more instance variables. These variables are allocated when the flow
starts. Any @Aut owi r ed transient references the variable holds are aso rewired when the flow
resumes.

var
Usethevar eement to declare aflow variable:

<var nane="searchCriteria" class="com nyconpany. nyapp. hotel s. search. SearchCriteria"/>

Make sure your variable's classimplementsj ava. i 0. Seri al i zabl e, asthe instance state
is saved between flow requests.

2.9. Calling subflows

A flow may call another flow as a subflow. The flow will wait until the subflow returns, then
respond to the subflow outcome.

subflow-state
Usethesubf | ow st at e element to call another flow as a subflow:

<subfl owstate id="addGuest" subflow="createCuest">
<transition on="guestCreated" to="revi ewBooking">
<eval uat e expressi on="booki ng. guests. add(currentEvent.attributes. guest)" />
</transition>
<transition on="creationCancelled" to="revi ewBooki ng" />
</ subf | ow st at e>

The above example callsthe cr eat eGuest flow, then waitsfor it to return. When the flow
returnswith aguest Cr eat ed outcome, the new guest is added to the booking's guest list.

Passing a subflow input
Usethei nput element to passinput to the subflow:

<subfl ow state id="addGuest" subfl ow="createCGuest">
<i nput nanme="booki ng" />
<transition to="revi ewBooking" />

</ subf| ow st at e>

14 Defining Flows

Defining Flows

Mapping subflow output
Simply refer to a subflow output attribute by its name within a outcome transition:

<transition on="guestCreated" to="revi ewBooking">
<eval uat e expressi on="booki ng. guests. add(currentEvent.attributes. guest)" />
</transition>

In the above example, guest isthe name of an output attribute returned by the
guest Cr eat ed outcome.

Checkpoint: calling subflows
Now review the sample booking flow calling a subflow:

<flow xm ns="http://ww. spri ngframewor k. or g/ schema/ webf | ow"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xsi : schemalLocati on="http://ww. spri ngfranewor k. or g/ schema/ webf | ow
http://wwm. springfranmewor k. or g/ schema/ webf | ow spri ng- webf | ow 2. 0. xsd" >

<input nanme="hotel I d" />

<on-start>
<eval uat e expressi on="booki ngServi ce. creat eBooki ng(hotel I d, currentUser.nane)"
resul t ="fl owScope. booki ng" />
</on-start>

<vi ew state id="enterBooki ngDetails">
<transition on="submt" to="revi ewBooki ng" />
</ vi ew st at e>

<vi ew state id="revi ewBooki ng">
<transition on="addGuest" to="addCuest" />
<transition on="confirm' to="booki ngConfirnmed" />
<transition on="revise" to="enterBookingDetails" />
<transition on="cancel" to="booki ngCancelled" />

</ vi ew st at e>

<subfl owstate id="addGuest" subflow="createCuest">
<transition on="guest Created" to="revi ewBooki ng">
<eval uat e expressi on="booki ng. guests. add(currentEvent.attributes. guest)" />
</transition>
<transition on="creationCancelled" to="revi ewBooki ng" />
</ subf| ow st at e>

<end-state id="booki ngConfirmed" >

<out put nane="booki ngl d" val ue="booking.id" />
</ end- st at e>
<end- state id="booki ngCancel |l ed" />

</ fl ow>

The flow now callsacr eat eGuest subflow to add a new guest to the guest list.

Version 2.0.9

16

16

Spring Web Flow

Defining Flows

Expression Language (EL) 17

3. Expression Language (EL)

3.1. Introduction

Web Flow uses EL to access its data model and invoke actions. This chapter will familiarize you
with the EL syntax, and specia EL variables you can reference from your flow definition.

3.2. Supported EL implementations

Unified EL

Web Flow attempts to use the Unified EL by default. | boss- el iscurrently the default EL
implementation. When found in your classpath along with the el - api , it will be used
automatically. You can find the JBoss EL jar in the SpringSource Bundle Repository.

Note
Theel - api dependency istypically provided by your web container. Tomcat 6
includesiit, for example.

OGNL

OGNL isthe other EL supported by Web Flow 2. OGNL isthe EL most familiar to Web Flow
version 1.0 users. To use ognl, ssimply include ognl inyour classpath instead of j boss- el .
Please refer to the OGNL language guide for specificson its EL syntax.

3.3. EL portability

In general, you will find the Unified EL and OGNL have avery similar syntax. For basic
variable resolution, property access, and method invocation the syntax isidentical. We
recommend adhering to Unified EL syntax whenever possible, and only relying on proprietary
EL features when needed.

3.4. EL usage

EL isused for many things within aflow, including:

1. Accessing data provided by the client, such as flow input attributes and request parameters.

Version 2.0.9 17

http://en.wikipedia.org/wiki/Unified_Expression_Language
http://www.springsource.com/repository/app/bundle/detail?name=com.springsource.org.jboss.el
http://www.ognl.org
http://www.ognl.org/2.6.9/Documentation/html/LanguageGuide/index.html

18 Spring Web Flow

2. Accessing internal data structures such asf | owScope.
3. Invoking methods on Spring beans.
4. Resolving constructs such as state transition criteria, subflow ids, and view names.

Views rendered by flows typically access flow data structures using EL as well.

Expression types

There are basically two types of expressionsin Web Flow.

Standard eval expressions

The first, and most common, type of expression, is the standard eval expression. Such
expressions are dynamically evaluated by the EL and should not be enclosed in delimiterslike
${} or#{}. For example:

<eval uat e expression="searchCriteria.nextPage()" />

The expression above is a standard expression that invokes the next Page method on the
searchCrit eri a variable when evaluated. Attempting to enclose this expression in special
eval delimiterslike${} or #{} will resultinan| | | egal Ar gunent Excepti on.

Note
We view use of special eval delimiters as redundant in this context, as the only
acceptable value for the expr essi on attribute isa single eval expression string.

Template expressions

The second type of expressionisa"template” expression. Such expressions allow a mixing of
literal text with one or more eval blocks. Each eval block is explictly delimited with the ${ }
delimiters. For example:

<view state id="error" view="error-${external Context.|ocale}.xhtm" />

The expression above is atemplate expression. The result of evaluation will be a string that
concatenates the literal text er r or - with the result of evaluating

ext er nal Cont ext . | ocal e. Asyou can see, explicit delimiters are necessary here to
demarcate eval blocks within the template.

See the Web Flow XML schemafor a complete listing of the XML attributes that accept
standard expressions and template expressions.

18 Expression Language (EL)

Expression Language (EL) 19

3.5. Special EL variables

There are several implicit variables you may reference from within aflow. These variables are
discussed in this section.

flowScope
Usef | owScope to assign aflow variable. Flow scope gets allocated when a flow starts and

destroyed when the flow ends. With the default implementation, any objects stored in flow scope
need to be Serializable.

<eval uat e expression="searchService.findHotel (hotelld)" result="fl owScope. hotel" />

viewScope
Usevi ewScope to assign aview variable. View scope gets allocated when avi ew st at e
enters and destroyed when the state exits. View scopeis only referenceable from within a

vi ew st at e. With the default implementation, any objects stored in view scope need to be
Seridlizable.

<on-render >
<eval uat e expressi on="searchService. findHotel s(searchCriteria)" result="vi ewScope. hotel s"
resul t-type="dat aMbdel " />
</ on-render >

requestScope

User equest Scope to assign arequest variable. Request scope gets allocated when aflow is
called and destroyed when the flow returns.

<set nane="request Scope. hotel | d" val ue="request Paraneters.id" type="long" />

flashScope

Usef | ashScope to assign aflash variable. Flash scope gets allocated when a flow starts,
cleared after every view render, and destroyed when the flow ends. With the default
implementation, any objects stored in flash scope need to be Seriaizable.

<set nane="fl ashScope. st at usMessage" val ue="'Booki ng confirnmed " />

conversationScope

Version 2.0.9 19

20 Spring Web Flow

Useconver sat i onScope to assign a conversation variable. Conversation scope gets
allocated when atop-level flow starts and destroyed when the top-level flow ends. Conversation
scope is shared by atop-level flow and al of its subflows. With the default implementation,
conversation scoped objects are stored in the HTTP session and should generally be Serializable
to account for typical session replication.

<eval uat e expressi on="searchService. findHotel (hotelld)" result="conversati onScope. hotel " />

reg uestParameters
User equest Par anet er s to access a client request parameter:

<set nanme="request Scope. hotel | d" val ue="request Paraneters.id" type="long" />

currenteEvent
Usecurrent Event to access attributes of the current Event :

<eval uat e expressi on="booki ng. guests. add(currentEvent.attributes. guest)" />

currentUser
Usecur rent User to accessthe authenticated Pr i nci pal :

<eval uat e expressi on="booki ngServi ce. creat eBooki ng(hotel I d, currentUser.nane)"
resul t ="fl owScope. booki ng" />

messageContext

Use messageCont ext to access acontext for retrieving and creating flow execution
messages, including error and success messages. See the MessageCont ext Javadocs for more
information.

<eval uat e expressi on="booki ngVal i dat or. val i dat e(booki ng, nessageContext)" />

resourceBundle
User esour ceBundl e to access a message resource.

<set nane="fl ashScope. successMessage" val ue="resour ceBundl e. successMessage" />

20 Expression Language (EL)

Expression Language (EL) 21

flowRequestContext

Usef | owRequest Cont ext to accessthe Request Cont ext API, which is arepresentation
of the current flow request. See the API Javadocs for more information.

flowExecutionContext

Usef | owExecut i onCont ext to accessthe Fl owExecut i onCont ext API, whichisa
representation of the current flow state. See the API Javadocs for more information.

flowExecutionUrl

Usef | owExecuti onUr | to accessthe context-relative URI for the current flow execution
view-state.

externalContext

Useext er nal Cont ext to access the client environment, including user session attributes.
See the Ext er nal Cont ext API JavaDaocs for more information.

<eval uat e expressi on="searchServi ce. suggest Hot el s(ext er nal Cont ext. sessi onMap. userProfile)"
resul t ="vi ewScope. hotel s" />

3.6. Scope searching algorithm

When assigning a variable in one of the flow scopes, referencing that scopeis required. For
example:

<set name="request Scope. hotel | d" val ue="request Paraneters.id" type="long" />

When simply accessing a variable in one of the scopes, referencing the scope is optional. For
example:

<eval uat e expression="entityManager. persist(booking)" />

If no scopeis specified, like in the use of booki ng above, a scope searching algorithm will be
employed. The algorithm will ook in request, flash, view, flow, and conversation scope for the
variable. If no such variableisfound, an Eval uat i onExcept i on will be thrown.

Version 2.0.9 21

22

22

Spring Web Flow

Expression Language (EL)

Rendering views

4. Rendering views

4.1. Introduction

This chapter shows you how to usethevi ew st at e element to render views within aflow.

4.2. Defining view states

Usethevi ew st at e element to define a step of the flow that renders a view and waits for a
user event to resume:

<vi ew state id="enterBooki ngDetails">
<transition on="submt" to="revi ewBooki ng" />
</vi ew st at e>

By convention, aview-state maps itsid to aview template in the directory where the flow is
located. For example, the state above might render

/ VEEB- | NF/ hot el s/ booki ng/ ent er Booki ngDet ai | s. xht ml if the flow itself was
located inthe/ VEEB- | NF/ hot el s/ booki ng directory.

Below isa sample directory structure showing views and other resources like message bundles
co-located with their flow definition:

¥ 5% > webapp 11642
b [=F css 11640
b [=f images 11188
b [META-INF 8740
¥ [> WEB-INF 11642
b [=F classes 11188
¥ =% hotels 11623
¥ =% booking 11623
¥y booking.xml 11563
D, enterBookingDetails.jsp 11623
EE, messages.properties 11623
D, reviewBooking.jsp 11424

Flow Packaging

4.3. Specifying view identifiers

Version 2.0.9

23

23

24 Spring Web Flow

Usethevi ew attribute to specify theid of the view to render explicitly.

Flow relative view ids
The view id may be arelative path to view resource in the flow's working directory:

<vi ew state id="enterBooki ngDetails" view="bookingDetails.xhtm ">

Absolute view ids
The view id may be a absolute path to a view resource in the webapp root directory:

<vi ew state id="enterBooki ngDetails" view="/WEB-|NF/ hot el s/ booki ng/ booki ngDetails.xhtm ">

Logical view ids

With some view frameworks, such as Spring MV C's view framework, the view id may also be a
logical identifier resolved by the framework:

<vi ew state id="enterBooki ngDetails" view="bookingDetails">

See the Spring MV C integration section for more information on how to integrate with the MV C
Vi ewResol ver infrastructure.
4.4. View scope

A view-state alocates anew vi ewScope when it enters. This scope may be referenced within
the view-state to assign variables that should live for the duration of the state. This scopeis
useful for manipulating objects over a series of requests from the same view, often Ajax
requests. A view-state destroys its viewScope when it exits.

Allocating view variables

Usethevar tagto declare aview variable. Like aflow variable, any @\ut owi r ed references
are automatically restored when the view state resumes.

<var nanme="searchCriteria" class="com nyconpany. nyapp. hotels. SearchCriteria" />

Assigning a viewScope variable

24 Rendering views

Rendering views 25

Usetheon- r ender tag to assign avariable from an action result before the view renders:

<on-render >
<eval uat e expressi on="booki ngServi ce.findHotel s(searchCriteria)" result="vi enScope. hotel s" />
</ on-render >

Manipulating objects in view scope

Objectsin view scope are often manipulated over a series of requests from the same view. The
following example pages through a search results list. Thelist is updated in view scope before
each render. Asynchronous event handlers modify the current data page, then request
re-rendering of the search results fragment.

<vi ew state id="searchResults">
<on-render >
<eval uat e expressi on="booki ngService. findHotel s(searchCriteria)"
resul t ="vi ewScope. hotel s" />
</ on-render >
<transition on="next">
<eval uat e expression="searchCriteria.nextPage()" />
<render fragnments="searchResul tsFragnent" />
</transition>
<transition on="previous">
<eval uat e expression="searchCriteria.previousPage()" />
<render fragnents="searchResul tsFragnent" />
</transition>
</ vi ew st at e>

4.5. Executing render actions

Usetheon- r ender element to execute one or more actions before view rendering. Render
actions are executed on the initial render as well as any subsequent refreshes, including any
partial re-renderings of the view.

<on-r ender >
<eval uat e expressi on="booki ngService.findHotel s(searchCriteria)" result="vi ewScope. hotel s" />
</ on-render >

4.6. Binding to a model

Usethe nodel attribute to declare amodel object the view bindsto. This attribute istypically
used in conjunction with views that render data controls, such as forms. It enables form data
binding and validation behaviors to be driven from metadata on your model object.

The following example declares an ent er Booki ngDet ai | s state manipulatesthe booki ng
model:

<vi ew state id="enterBooki ngDetails" nodel ="booki ng">

Version 2.0.9 25

26 Spring Web Flow

The model may be an object in any accessible scope, such asf | owScope or vi ewScope.
Specifying anodel triggers the following behavior when aview event occurs:

1. View-to-model binding. On view postback, user input values are bound to model object
properties for you.

2. Model validation. After binding, if the model object requires validation that validation logic
will be invoked.

For aflow event to be generated that can drive aview state transition, model binding must
complete successfully. If model binding fails, the view is re-rendered to allow the user to revise
their edits.

4.7. Performing type conversion

When amodel binding occurs during view postback, the binding system will attempt to convert
the input value to the type of the target model property if necessary. Default Converters are
registered for common types such as Numbers, primitives, enums, and Dates and are applied
automatically. Users also have the ability to register their own converters for user-defined types,
and to override the default Converters.

Implementing a Converter

To implement your own Converter, implement the

or g. spri ngframewor k. bi ndi ng. convert. converters. TwoWayConverter
interface. A convenient St r i ngToQbj ect base class has been provided to simplify the
implementation of this interface for converters that convert from a user input String to a
user-defined Object and back. Simply extend from this class and override these two methods:

protected abstract Object toObject(String string, Cass targetC ass) throws Exception;

protected abstract String toString(Object object) throws Exception;

toCbj ect(String, C ass) shouldconvert from theinput string to your object's type, and
toStri ng(Obj ect) should do the reverse.

The following example shows a Converter that converts from String to a MonetaryAmount for
working with currency values:

public class StringToMnetaryAnount extends StringToObject {

public StringToMnetaryAnmount () {
super (Monet ar yAnount . cl ass) ;

@verride
protected Object toObject(String string, Cass targetC ass) {
return MnetaryAmount . val ued (string);

@verride
protected String toString(Object object) {

26 Rendering views

Rendering views 27

Monet ar yAnount anount = (MonetaryAnount) object;
return anmpunt.toString();

}
}

Review the pre-built convertersin the
or g. spri ngframewor k. bi ndi ng. convert. convert ers package to see more
examples of Converter implementations.

Registering a Converter

Toinstall your own Converter or override any of the default Converters, extend from

or g. spri ngframewor k. bi ndi ng. convert. servi ce. Def aul t Conver si onServi ce
and overridethe addDef aul t Convert er s() method. Usethe

addConverter (Converter) method to register the primary Converter to use to convert
between two types, suchasa St ri ng and aMonet ar yAnount . Optionally use the
addConverter(String, Converter) method to register aternate convertersfor the

same type pair; for example, to support formatting aj ava. uti | . Dat e asa String in severa
different ways.

Each alternate Converter isindexed by aunique convert er | d that can be referenced when
configuring amodel binding. When no converter id is referenced explicitly by a binding, the
primary Converter between the two types is always used.

The ConversionService is the object Web Flow consults at runtime to lookup conversion
executors to convert from one type to another. There is generally one ConversionService per
application. See the System Setup section for documentation on how to configure an extended
ConversionService implementation that registers custom Converters to apply application-wide.
Also consult the Convert API documentation for more information.

4.8. Suppressing binding

Use the bi nd attribute to suppress model binding and validation for particular view events. The
following example suppresses binding when the cancel event occurs:

<vi ew state id="enterBooki ngDetails" nodel ="booki ng">

<transition on="proceed" to="reviewBooking">

<transition on="cancel" to="booki ngCancelled" bind="false" />
</ vi ew st at e>

4.9. Specifying bindings explicitly

Usethe bi nder element to configure the exact set of model bindings usable by the view. This
is particularly useful in a Spring MV C environment for restricting the set of "allowed fields' per
view.

<vi ew state id="enterBooki ngDetails" nodel ="booki ng">

Version 2.0.9 27

28 Spring Web Flow

<bi nder >
<bi ndi ng property="creditCard" />
<bi ndi ng property="creditCardNanme" />
<bi ndi ng property="creditCardExpiryMnth" />
<bi ndi ng property="creditCardExpiryYear" />
</ bi nder >
<transition on="proceed" to="revi ewBooki ng" />
<transition on="cancel" to="cancel" bind="fal se" />
</ vi ew st at e>

If the binder element is not specified, al public properties of the model are eligible for binding
by the view. With the binder element specified, only the explicitly configured bindings are
allowed.

Each binding may also apply a converter to format the model property value for display in a
custom manner. If no converter is specified, the default converter for the model property's type
will be used.

<view state id="enterBookingDetails" nodel ="booki ng">
<bi nder >
<bi ndi ng property="checki nDate" converter="shortDate" />
<bi ndi ng property="checkoutDate" converter="shortDate" />
<bi nding property="creditCard" />
<bi ndi ng property="creditCardNane" />
<bi ndi ng property="creditCardExpi ryMonth" />
<bi ndi ng property="creditCardExpiryYear" />
</ bi nder >
<transition on="proceed" to="revi ewBooki ng" />
<transition on="cancel" to="cancel" bind="fal se" />
</vi ew st at e>

In the example above, the shor t Dat e converter isbound to the checki nDat e and
checkout Dat e properties. Custom converters may be registered with the application’s
ConversionService.

Each binding may also apply arequired check that will generate a validation error if the user
provided valueis null on form postback:

<vi ew state id="enterBooki ngDetails" nodel ="booki ng">
<bi nder >
<bi ndi ng property="checki nDate" converter="shortDate" required="true" />
<bi ndi ng property="checkoutDate" converter="shortDate" required="true" />
<bi ndi ng property="creditCard" required="true" />
<bi ndi ng property="creditCardNane" required="true" />
<bi ndi ng property="creditCardExpi ryMnth" required="true" />
<bi ndi ng property="creditCardExpiryYear" required="true" />
</ bi nder >
<transition on="proceed" to="revi ewBooki ng">
<transition on="cancel" to="booki ngCancelled" bind="false" />
</ vi ew st at e>

In the example above, all of the bindings are required. If one or more blank input values are
bound, validation errors will be generated and the view will re-render with those errors.

4.10. Validating a model

Model validation is driven by constraints specified against amodel object. Web Flow supports
enforcing such constraints programatically.

28 Rendering views

Rendering views 29

Programmatic validation

There are two ways to perform model validation programatically. Thefirst is to implement
validation logic in your model object. The second is to implement an external Val i dat or .
Both ways provide you with aVal i dat i onCont ext to record error messages and access
information about the current user.

Implementing a model validate method

Defining validation logic in your model object isthe simplest way to validate its state. Once such
logic is structured according to Web Flow conventions, Web Flow will automatically invoke that
logic during the view-state postback lifecycle. Web Flow conventions have you structure model
validation logic by view-state, allowing you to easily validate the subset of model properties that
are editable on that view. To do this, simply create a public method with the name

val i dat e${ st at e}, where ${ st at e} istheid of your view-state where you want
validation to run. For example:

public class Booking {
private Date checkinDate;
private Date checkout Date

public void validateEnterBooki ngDetail s(ValidationContext context) {
MessageCont ext nessages = cont ext.get MessageCont ext () ;
if (checkinDate. before(today())) {
nmessages. addl\/bssage(new MessageBui | der (). error (). source("checkinDate").
def aul t Text (" Check in date nust be a future date").build());
} else if (!checkinDate.before(checkoutDate)) {
messages. addMessage(new MessageBuil der().error().source("checkoutDate").
) def aul t Text (" Check out date nust be later than check in date").build());

}
}

In the example above, when atransition istriggered in aent er Booki ngDet ai | s view-state
that is editing aBooki ng model, Web Flow will invoke the

val i dat eEnt er Booki ngDet ai | s(Val i dati onCont ext) method automatically
unless validation has been suppressed for that transition. An example of such aview-stateis
shown below:

<view state id="enterBooki ngDetails" nodel ="booki ng">
<transition on="proceed" to="revi ewBooki ng">
</ vi ew st at e>

Any number of validation methods are defined. Generally, aflow edits amodel over a series of
views. In that case, avalidate method would be defined for each view-state where validation
needs to run.

Implementing a Validator

The second way isto define a separate object, called a Validator, which validates your model
object. To do this, first create a class whose name has the pattern ${ model} Validator, where

Version 2.0.9 29

30 Spring Web Flow

${ nodel } isthe capitialized form of the model expression, such asbooki ng. Then definea
public method with thenameval i dat e${ st at e}, where ${ st at e} istheid of your
view-state, such asent er Booki ngDet ai | s. The class should then be deployed as a Spring
bean. Any number of validation methods can be defined. For example:

@Conponent
public class BookingValidator {
public void val i dat eEnt er Booki ngDet ai | s(Booki ng booki ng, ValidationContext context) {
MessageCont ext nessages = cont ext.get MessageCont ext () ;
i f (booking. get Checki nDate().before(today())) {
nmessages. addMessage(new MessageBuil der().error().source("checki nDate").
def aul t Text (" Check in date nust be a future date").build());
} else if (!booking.getCheckinDate().before(booking.getCheckoutDate())) {
messages. addMessage(new MessageBuil der().error().source("checkoutDate").
) def aul t Text (" Check out date nmust be later than check in date").build());
}
}

In the example above, when atransition istriggered in aent er Booki ngDet ai | s view-state
that is editing aBooki ng model, Web Flow will invoke the

val i dat eEnt er Booki ngDet ai | s(Booki ng, Val i dati onCont ext) method
automatically unless validation has been suppressed for that transition.

A Validator can also accept a Spring MV C Er r or s object, which isrequired for invoking
existing Spring Validators.

Validators must be registered as Spring beans employing the naming convention

${ nodel } Val i dat or to be detected and invoked automatically. In the example above,
Spring 2.5 classpath-scanning would detect the @Conponent and automatically register it asa
bean with the name booki ngVal i dat or . Then, anytime the booki ng model needsto be
validated, thisbooki ngVal i dat or instance would be invoked for you.

ValidationContext

A ValidationContext allows you to obtain a MessageCont ext to record messages during
validation. It also exposes information about the current user, such asthe signaled user Event
and the current user's Pri nci pal identity. Thisinformation can be used to customize
validation logic based on what button or link was activated in the Ul, or who is authenticated.
Seethe API Javadocsfor Val i dat i onCont ext for more information.

4.11. Suppressing validation

Usetheval i dat e attribute to suppress model validation for particular view events:

<vi ew state id="chooseAmrenities" nodel ="booki ng">

<transition on="proceed" to="reviewBooking">

<transition on="back" to="enterBookingDetails" validate="false" />
</ vi ew st at e>

In this example, data binding will still occur on back but validation will be suppressed.

30 Rendering views

Rendering views 31

4.12. Executing view transitions

Define one or moret r ansi t i on elementsto handle user events that may occur on the view. A
transition may take the user to another view, or it may simply execute an action and re-render the
current view. A transition may also request the rendering of parts of aview called "fragments’
when handling an Ajax event. Finally, "global" transitions that are shared across all views may
also be defined.

Implementing view transitionsisillustrated in the following sections.

Transition actions

A view-state transition can execute one or more actions before executing. These actions may
return an error result to prevent the transition from exiting the current view-state. If an error
result occurs, the view will re-render and should display an appropriate message to the user.

If the transition action invokes a plain Java method, the invoked method may return false to
prevent the transition from executing. This technique can be used to handle exceptions thrown by
service-layer methods. The example below invokes an action that calls a service and handles an
exceptional situation:

<transition on="submt" to="booki ngConfirned">
<eval uat e expressi on="booki ngActi on. makeBooki ng(booki ng, nmessageContext)" />
</transition>

public class Booki ngAction {
public b?ol ean makeBooki ng(Booki ng booki ng, MessageContext context) {
try
booki ngSer vi ce. make(booki ng) ;
return true;
} catch (RoomNot Avai | abl eException e) {
cont ext. addMessage(new MessageBui | der().error().
.defaultText ("No roomis available at this hotel™).build());
return fal se;
}
}
}

Note
When there is more than one action defined on atransition, if one returns an error
result the remaining actions in the set will not be executed. If you need to ensure one

transition action's result cannot impact the execution of another, define asingle
transition action that invokes a method that encapsulates all the action logic.

Global transitions

Usetheflow'sgl obal -t ransi ti ons element to create transitions that apply across all
views. Global-transitions are often used to handle global menu links that are part of the layout.

Version 2.0.9 31

32 Spring Web Flow

<gl obal -transi tions>
<transition on="login" to="login" />
<transition on="logout" to="l|ogout" />
</ gl obal -transitions>

Event handlers

From a view-state, transitions without targets can also be defined. Such transitions are called
"event handlers':

<transition on="event">
<!-- Handl e event -->
</transition>

These event handlers do not change the state of the flow. They simply execute their actions and
re-render the current view or one or more fragments of the current view.

Rendering fragments

Usether ender element within atransition to request partial re-rendering of the current view
after handling the event:

<transition on="next">
<eval uat e expression="searchCriteria.nextPage()" />
<render fragments="searchResul tsFragnment" />
</transition>

The fragments attribute should reference the id(s) of the view element(s) you wish to re-render.
Specify multiple elements to re-render by separating them with acomma delimiter.

Such partial rendering is often used with events signaled by Ajax to update a specific zone of the
view.

4.13. Working with messages

Spring Web Flow's MessageCont ext isan API for recording messages during the course of
flow executions. Plain text messages can be added to the context, as well as internationalized
messages resolved by a Spring MessageSour ce. Messages are renderable by views and
automatically survive flow execution redirects. Three distinct message severities are provided:

i nf o, war ni ng, and er r or . In addition, aconvenient MessageBui | der existsfor fluently
constructing messages.

Adding plain text messages

MessageCont ext context = ...
MessageBui | der buil der = new MessageBui | der () ;

32 Rendering views

Rendering views 33

cont ext . addNbssage(bwlder error().source("checkinDate")
.defaul t Text ("Check in date nust be a future date). build());
cont ext . addMassage(bm | der. warn(). sour ce("snoki ng ")
.defaul t Text ("Snmoking is bad for your health™).build());
cont ext. addMessage(bui |l der.info()
.defaul t Text ("W have processed your reservation - thank you and enjoy your stay").build());

Adding internationalized messages

MessageCont ext context = ...
MessageBui | der buil der = new MessageBui | der () ;
cont ext . addMessage(bui | der. error (). source("checki nDate").code("checki nDate. not Future").build());
cont ext. addMessage(bui | der. warn(). source("snoki ng").code("not Heal t hy")
.resol vabl eArg("snoking").build());
cont ext . addMessage(buil der.info(). code(reservationConfirmation").build());

Using message bundles

Internationalized messages are defined in message bundles accessed by a Spring
MessageSour ce. To create aflow-specific message bundle, smply define

messages. properti es file(s) inyour flow's directory. Create a default

messages. properti es fileand a.propertiesfile for each additional Local e you need to
support.

#messages. properties

checki nDat e=Check in date nust be a future date

not Heal t hy={0} is bad for your health

reservationConfirmati on=We have processed your reservation - thank you and enjoy your stay

From within aview or aflow, you may also access message resources using the
r esour ceBundl e EL variable:

<h: out put Text val ue="#{resourceBundl e. reservati onConfirmation}" />

Understanding system generated messages

There are several places where Web Flow itself will generate messages to display to the user.
One important place this occursis during view-to-model data binding. When a binding error

occurs, such as atype conversion error, Web Flow will map that error to a message retrieved
from your resource bundle automatically. To lookup the message to display, Web Flow tries

resource keys that contain the binding error code and target property name.

As an example, consider abinding to achecki nDat e property of aBooki ng object. Suppose
the user typed in a alphabetic string. In this case, atype conversion error will be raised. Web

Flow will map the 'typeMismatch' error code to a message by first querying your resource bundle
for a message with the following key:

booki ng. checki nDat e. t ypeM smat ch

Version 2.0.9 33

34 Spring Web Flow

The first part of the key isthe model class's short name. The second part of the key isthe
property name. The third part is the error code. This alows for the lookup of a unique message to
display to the user when a binding fails on amodel property. Such a message might say:

booki ng. checki nDat e. t ypeM smat ch=The check in date nust be in the format yyyy-nmmdd.

If no such resource key can be found of that form, amore generic key will be tried. Thiskey is
simply the error code. The field name of the property is provided as a message argument.

typeM smat ch=The {0} field is of the wong type.

4.14. Displaying popups
Use the popup attribute to render aview in amodal popup dialog:

<vi ew state id="changeSearchCriteria" view="enterSearchCriteria.xhtm" popup="true">

When using Web Flow with the Spring Javascript, no client side code is necessary for the popup
to display. Web Flow will send a response to the client requesting a redirect to the view from a
popup, and the client will honor the request.

4.15. View backtracking

By default, when you exit aview state and transition to a new view state, you can go back to the
previous state using the browser back button. These view state history policies are configurable
on a per-transition basis by using the hi st or y attribute.

Discarding history
Set the history attribute to di scar d to prevent backtracking to aview:

<transition on="cancel" to="booki ngCancelled" history="discard">

Invalidating history

Set the history attributeto i nval i dat e to prevent backtracking to aview aswell all
previously displayed views:

<transition on="confirm' to="bookingConfirmed" history="invalidate">

34 Rendering views

Executing actions 35

5. Executing actions

5.1. Introduction

This chapter shows you how to usetheact i on- st at e element to control the execution of an
action at a point within aflow. It will also show how to usethedeci si on- st at e element to
make a flow routing decision. Finally, several examples of invoking actions from the various
points possible within aflow will be discussed.

5.2. Defining action states

Usetheact i on- st at e element when you wish to invoke an action, then transition to another
state based on the action's outcome:

<action-state id="noreAnswersNeeded">
<eval uat e expression="intervi ew. noreAnswer sNeeded()" />
<transition on="yes" to="answerQuestions" />
<transition on="no" to="finish" />

</ action-state>

The full example below illustrates ainterview flow that uses the action-state above to determine
if more answers are needed to compl ete the interview:

<flow xm ns="http://wwm. springfranmewor k. or g/ schema/ webf | ow'
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xsi : schemaLocati on="http://ww. spri ngframewor k. or g/ schema/ webf | ow
http://ww. springfranmewor k. or g/ schema/ webf | ow spri ng-webf | ow 2. 0. xsd" >

<on-start>
<eval uate expression="intervi ewFactory.createlnterview)" result="fl owScope.interview' />
</on-start>

<vi ew state id="answer Questions" nodel ="questionSet">
<on-entry>
<eval uate expression="intervi ew get Next QuestionSet ()" result="vi ewScope. questionSet" />
</on-entry>
<transition on="subm t Answers" to="noreAnswer sNeeded" >
<eval uat e expression="intervi ew recordAnswers(questionSet)" />
</transition>
</ vi ew st at e>

<action-state id="noreAnswersNeeded">
<eval uat e expression="intervi ew. noreAnswer sNeeded()" />
<transition on="yes" to="answerQuestions" />
<transition on="no" to="finish" />

</ action-state>

<end-state id="finish" />

</flow>

5.3. Defining decision states

Usethedeci si on- st at e element as an alternative to the action-state to make a routing
decision using a convenient if/else syntax. The example below shows the

Version 2.0.9 35

36 Spring Web Flow

nmor eAnswer sNeeded state above now implemented as a decision state instead of an
action-state:

<deci si on-state id="noreAnswer sNeeded" >
<if test="intervi ew noreAnswersNeeded()" then="answer Questions" else="finish" />
</ deci si on- st at e>

5.4. Action outcome event mappings

Actions often invoke methods on plain Java objects. When called from action-states and
decision-states, these method return values can be used to drive state transitions. Since
transitions are triggered by events, a method return value must first be mapped to an Event
object. The following table describes how common return value types are mapped to Event
objects:

Table 5.1. Action method return value to event id mappings

Method return type Mapped Event identifier expression

javalang.String the String value
java.lang.Boolean yes (for true), no (for false)
javalang.Enum the Enum name

any other type success

Thisisillustrated in the example action state below, which invokes a method that returns a
boolean value:

<action-state id="noreAnswer sNeeded" >

<eval uat e expression="intervi ew. mor eAnswer sNeeded()" />
<transition on="yes" to="answerQuestions" />
<transition on="no" to="finish" />

</ action-state>

5.5. Action implementations

While writing action code as POJO logic is the most common, there are several other action
implementation options. Sometimes you need to write action code that needs access to the flow
context. Y ou can always invoke a POJO and pass it the flowRequestContext as an EL variable.
Alternatively, you may implement the Act i on interface or extend fromthe Mul ti Acti on
base class. These options provide stronger type safety when you have a natural coupling between
your action code and Spring Web Flow APIs. Examples of each of these approaches are shown
below.

36 Executing actions

Executing actions 37

Invoking a POJO action

<eval uat e expressi on="poj oActi on. met hod(f| owRequest Context)" />

public class PojoAction {
public String method(Request Context context) {

}
}

Invoking a custom Action implementation

<eval uat e expression="customAction" />

public class CustomAction inplenents Action {
public Event execute(Request Context context) {

}
}

Invoking a MultiAction implementation

<eval uate expression="nul ti Action. acti onMet hod1" />

public class Customvul ti Action extends MultiAction {
public Event actionMethodl(Request Context context) {

}
public Event actionMet hod2(Request Context context) {

}

5.6. Action exceptions

Actions often invoke services that encapsulate complex business logic. These services may
throw business exceptions that the action code should handle.

Handling a business exception with a POJO action

The following example invokes an action that catches a business exception, adds a error message
to the context, and returns aresult event identifier. The result is treated as aflow event which the

Version 2.0.9 37

38 Spring Web Flow

calling flow can then respond to.

<eval uat e expressi on="booki ngActi on. makeBooki ng(booki ng, flowRequest Context)" />

public class Booki ngAction {
public S}ri ng makeBooki ng(Booki ng booki ng, Request Context context) {

try
Booki ngConfirmation confirmation = booki ngSer vi ce. nake(booki ng) ;
cont ext. get FI OWScope() put ("confirmation", confirmation);
return "success'

} catch (RoomNot Avai i abl eException e) {
cont ext. addMessage(new MessageBui |l der().error().

.defaul t Text ("No roomis available at this hotel™).build());

return "error";

Handling a business exception with a MultiAction

The following exampleis functionally equivlant to the last, but implemented as a MultiAction
instead of a POJO action. The MultiAction requires its action methods to be of the signature
Event ${nmet hodNane} (Request Cont ext), providing stronger type safety, while a
POJO action alows for more freedom.

<eval uat e expressi on="booki ngActi on. makeBooki ng" />

public class Booki ngAction extends MiltiAction {
public E}/ent makeBooki ng(Request Cont ext context) {

try
Booki ng booki ng = (Booki ng) context.getFl owScope() . get ("booking");
Booki ngConfirmation confirmation = booki ngSer vi ce. make(booki ng) ;
cont ext . get Fl owScope(). put("confirmation", confirmation);
return success();

} catch (RoomNot Avai i abl eException e) {
cont ext. get NbssageOont ext () .addMessage(new NbssageBw | der() error().

.defaul t Text ("No roomis available at this hotel™).build());

return error();

5.7. Other Action execution examples

on-start

The following example shows an action that creates a new Booking object by invoking a method
on aservice:

<flow xm ns="http://ww. springframewor k. or g/ schema/ webf | ow'
xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schena- i nst ance"
xsi : schemaLocati on="http://ww. spri ngframewor k. or g/ schema/ webf | ow
http://ww. springfranework. or g/ schenma/ webf | ow spri ng-webf| ow 2. 0. xsd" >

<i nput name="hotel I d" />

38 Executing actions

Executing actions 39

<on-start>
<eval uat e expressi on="booki ngServi ce. creat eBooki ng(hotel I d, currentUser.nane)"
resul t ="fl owScope. booki ng" />
</on-start>

</flow>

on-entry

The following example shows a state entry action that sets the special f r agnent s variable that
causes the view-state to render a partial fragment of its view:

<view state id="changeSearchCriteria" view="enterSearchCriteria.xhtm" popup="true">
<on-entry>
<render fragnents="hotel SearchForn{ />
</on-entry>
</vi ew st at e>

on-exit
The following example shows a state exit action that releases alock on arecord being edited:

<viewstate id="editOrder">
<on-entry>
<eval uat e expressi on="order Servi ce. sel ect For Updat e(orderld, currentUser)"
resul t ="vi ewScope. order" />
</on-entry>
<transition on="save" to="finish">
<eval uat e expression="order Servi ce. update(order, currentUser)" />
</transition>
<on-exit>
<eval uat e expressi on="order Service. rel easeLock(order, currentUser)" />
</ on-exit>
</ vi ew st at e>

on-end

The following example shows the equivalent object locking behavior using flow start and end
actions:

<flow xm ns="http://wwm. springfranmewor k. or g/ schenma/ webf | ow'
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xsi : schemaLocati on="http://ww. spri ngframewor k. or g/ schema/ webf | ow
http://ww. springfranmewor k. or g/ schema/ webf | ow spri ng-webf | ow 2. 0. xsd" >

<input nanme="orderld" />

<on-start>
<eval uat e expressi on="order Servi ce. sel ect For Updat e(orderld, currentUser)"
resul t ="fl owScope. order" />
</on-start>

<viewstate id="editO der">
<transition on="save" to="finish">
<eval uat e expressi on="order Servi ce. update(order, currentUser)" />
</transition>
</ vi ew st at e>

<on-end>
<eval uat e expression="order Service. rel easeLock(order, currentUser)" />
</ on- end>

</flow>

Version 2.0.9 39

40 Spring Web Flow

on-render

The following example shows arender action that loads a list of hotels to display before the view
is rendered:

<view state id="revi ewHot el s">
<on-r ender >
<eval uat e expressi on="booki ngServi ce. findHot el s(searchCriteria)"
resul t ="vi ewScope. hotel s" resul t-type="dataMdel " />
</ on-render >
<transition on="select" to="revi ewotel ">
<set nane="fl owScope. hotel " val ue="hotel s. sel ect edRow' />
</transition>
</ vi ew st at e>

on-transition

The following example shows a transition action adds a subflow outcome event attribute to a
collection:

<subfl ow state id="addGuest" subfl ow="createCGuest">
<transition on="guest Created" to="revi ewBooki ng">
<eval uat e expressi on="booki ng. guestList.add(currentEvent.attributes. newGuest)" />
</transition>
</ subf ow st at e>

Named actions

The following example shows how to execute a chain of actions in an action-state. The name of
each action becomes a qualifier for the action's result event.

<action-state id="doTwoThi ngs">
<eval uat e expression="service.thingOne()">
<attribute name="nanme" val ue="thi ngOne" />
</ eval uat e>
<eval uat e expression="service.thingTwo()">
<attribute nane="nane" val ue="thi ngTwo" />
</ eval uat e>
<transition on="thingTwo. success" to="showResults" />
</ action-state>

In this example, the flow will transition to showResul t s whent hi ngTwo completes
successfully.

Streaming actions

Sometimes an Action needs to stream a custom response back to the client. An example might be
aflow that renders a PDF document when handling a print event. This can be achieved by having
the action stream the content then record "Response Complete” status on the External Context.
The responseCompl ete flag tells the pausing view-state not to render the response because
another object has taken care of it.

40 Executing actions

Executing actions 41

<view state id="review tinerary">
<transition on="print">
<eval uat e expressi on="print Boar di ngPassActi on" />
</transition>
</ vi ew st at e>

public class PrintBoardi ngPassAction extends AbstractAction {
public Event doExecute(Request Context context) {
/| stream PDF content here...
/1 - Access HttpServl et Response by calling context.getExternal Context().getNativeResponse();
/1 - Mark response conpl ete by calling context.get External Context().recordResponseConplete();

return success();

}
}

In this example, when the print event is raised the flow will call the printBoardingPassAction.
The action will render the PDF then mark the response as complete.

Handling File Uploads

Another common task is to use Web Flow to handle multipart file uploads in combination with

Spring MVC'sMul ti part Resol ver . Oncetheresolver is set up correctly as described here
and the submitting HTML form is configured withenct ype="nul ti part/form dat a",
you can easily handle the file upload in atransition action. Given aform such as:

<form form nodel Attribute="fil eUpl oadHandl er" enctype="nultipart/formdata">
Select file: <input type="file" name="file"/>
<input type="submt" nanme="_event|d_upl oad" val ue="Upl oad" />
</form fornm

and a backing object for handling the upload such as:

package org. springfranmewor k. webf | ow. sanpl es. booki ng;
import org.springframework. web. multipart. MiltipartFile;
public class Fil eUpl oadHandl er {

private transient MiltipartFile file;

public void processFile() {

// Do something with the MultipartFile here
}
public void setFile(MiltipartFile file) {
this.file = file;
}

}

you can process the upload using atransition action asin the following example:

<vi ew state id="upl oadFil e" nodel ="upl oadFi | eHandl er ">
<var nanme="fil eUpl oadHandl er" cl ass="org. springfranmewor k. webf | ow. sanpl es. booki ng. Fi | eUpl oadHandl er" />
<transition on="upl oad" to="finish" >
<eval uat e expression="fil eUpl oadHandl er. processFile()"/>
</transition>
<transition on="cancel" to="finish" bind="false"/>
</vi ew st at e>

Version 2.0.9 41

http://static.springsource.org/spring/docs/2.5.x/reference/mvc.html#mvc-multipart

42 Spring Web Flow

TheMul ti part Fi | e will beboundtotheFi | eUpl oadHandl er bean as part of the normal
form binding process so that it will be available to process during the execution of the transition
action.

42 Executing actions

Flow Managed Persistence 43

6. Flow Managed Persistence

6.1. Introduction

Most applications access data in some way. Many modify data shared by multiple users and
therefore require transactional data access properties. They often transform relational data sets
into domain objects to support application processing. Web Flow offers "flow managed
persistence" where aflow can create, commit, and close a object persistence context for you.
Web Flow integrates both Hibernate and JPA object persistence technologies.

Apart from flow-managed persistence, there is the pattern of fully encapsulating
PersistenceContext management within the service layer of your application. In that case, the
web layer does not get involved with persistence, instead it works entirely with detached objects
that are passed to and returned by your service layer. This chapter will focus on the
flow-managed persistence, exploring how and when to use this feature.

6.2. FlowScoped PersistenceContext

This pattern createsaPer si st enceCont ext inf | owScope on flow startup, uses that
context for data access during the course of flow execution, and commits changes made to
persistent entities at the end. This pattern providesisolation of intermediate edits by only
committing changes to the database at the end of flow execution. This pattern is often used in
conjunction with an optimistic locking strategy to protect the integrity of data modified in
parallel by multiple users. To support saving and restarting the progress of aflow over an
extended period of time, adurable store for flow state must be used. If a save and restart
capability is not required, standard HT TP session-based storage of flow state is sufficient. In that
case, session expiration or termination before commit could potentially result in changes being
lost.

To use the FlowScoped PersistenceContext pattern, first mark your flow asa
per si st ence- cont ext :

<?xm version="1.0" encodi ng="UTF-8"?>
<flow xm ns="http://ww. springfranmewor k. or g/ schenma/ webf | ow'
xm ns: xsi ="http://ww.w3. org/ 2001/ XM_Schena- i nst ance"
xsi : schemaLocati on="http://ww. spri ngframewor k. or g/ schema/ webf | ow
http://ww. springfranmework. or g/ schenma/ webf | ow spri ng- webf | ow 2. 0. xsd" >
<persi st ence-context />

</ fl ow>

Then configure the correct Fl owExecut i onLi st ener to apply this pattern to your flow. If
using Hibernate, register the Hi ber nat eFl owExecut i onLi st ener . If using JPA, register
the JpaFl owExecut i onLi st ener.

<webf | ow f| ow executor id="fl owExecutor" flowregistry="flowRegistry">
<webf | ow. f| ow execution-1|isteners>
<webfl ow | i stener ref="jpaFl onExecutionListener" />

Version 2.0.9 43

44 Spring Web Flow

</ webf | ow: f| ow execution-1|i steners>
</ webf | ow: f| ow execut or >

<bean id="j paFl owExecuti onLi stener"
cl ass="org. springframewor k. webf | ow. per si st ence. JpaFl owExecuti onLi st ener">
<constructor-arg ref="entityManagerFactory" />

<constructor-arg ref="transacti onManager" />
</ bean>

To trigger acommit at the end, annotate your end-state with the commit attribute:

<end-state id="booki ngConfirmed" commt="true" />

That isit. When your flow starts, the listener will handle allocating anew Ent i t yManager in
f | owScope. Reference this EntityManager at anytime from within your flow by using the
special per si st enceCont ext variable. In addition, any data access that occurs using a
Spring managed data access object will use this EntityManager automatically. Such data access
operations should always execute non transactionally or in read-only transactions to maintain
isolation of intermediate edits.

44 Flow Managed Persistence

Securing Flows 45

/. Securing Flows

7.1. Introduction

Security is an important concept for any application. End users should not be able to access any
portion of asite simply by guessing the URL. Areas of asite that are sensitive must ensure that
only authorized requests are processed. Spring Security is a proven security platform that can
integrate with your application at multiple levels. This section will focus on securing flow
execution.

7.2. How do | secure a flow?

Securing flow execution is a three step process:

» Configure Spring Security with authentication and authorization rules

» Annotate the flow definition with the secured element to define the security rules
» Add the SecurityFlowExecutionListener to process the security rules.

Each of these steps must be completed or else flow security rules will not be applied.

7.3. The secured element

The secured element designates that its containing element should apply the authorization check
before fully entering. This may not occur more then once per stage of the flow execution that is
secured.

Three phases of flow execution can be secured: flows, states and transitions. In each case the
syntax for the secured element isidentical. The secured element islocated inside the element it is
securing. For example, to secure a state the secured element occurs directly inside that state:

<view state id="secured-view' >
<secured attributes="ROLE_USER' />

</ vi ew st at e>

Security attributes

Theat t ri but es attribute isa comma separated list of Spring Security authorization
attributes. Often, these are specific security roles. The attributes are compared against the user's
granted attributes by a Spring Security access decision manager.

Version 2.0.9 45

46 Spring Web Flow

<secured attributes="ROLE_USER' />

By default, arole based access decision manager is used to determineif the user is allowed
access. Thiswill need to be overridden if your application is not using authorization roles.

Matching type

There are two types of matching available: any and al | . Any, allows accessif at |east one of
the required security attributesis granted to the user. All, alows access only if each of the
required security attributes are granted to the user.

<secured attributes="ROLE _USER, ROLE_ANONYMOUS' match="any" />

This attribute is optional. If not defined, the default valueisany.

The mat ch attribute will only be respected if the default access decision manager is used.

7.4. The SecurityFlowExecutionListener

Defining security rules in the flow by themselves will not protect the flow execution. A
Securi t yFl onExecut i onLi st ener must also be defined in the webflow configuration
and applied to the flow executor.

<webf | ow f| ow executor id="flowExecutor" flowregistry="fl owRegistry">
<webf | ow f| ow execution-1isteners>
<webfl ow |i stener ref="securityFl owExecuti onLi stener" />
</ webf | ow f| ow execution-1isteners>
</ webf | ow: f| ow execut or >

<bean id="securityFl owExecutionLi stener"
cl ass="org. spri ngfranewor k. webf | ow. security. SecurityFl owExecuti onLi stener" />

If accessis denied to a portion of the application an AccessDeni edExcept i on will be
thrown. This exception will later be caught by Spring Security and used to prompt the user to
authenticate. It isimportant that this exception be allowed to travel up the execution stack
uninhibited, otherwise the end user may not be prompted to authenticate.

Custom Access Decision Managers

If your application is using authorities that are not role based, you will need to configure a
custom AccessDeci si onManager . You can override the default decision manager by
setting theaccessDeci si onVanager property on the security listener. Please consult the
Spring Security reference documentation to learn more about decision managers.

<bean id="securityFl owExecutionLi stener"
cl ass="org. springfranmewor k. webf | ow. security. SecurityFl owExecutionLi stener">
<property nanme="accessDeci si onManager" ref="nmyCust omAccessDeci si onManager" />

46 Securing Flows

http://static.springframework.org/spring-security/site/reference.html

Securing Flows 47

</ bean>

7.5. Configuring Spring Security

Spring Security has robust configuration options available. As every application and
environment has its own security requirements, the Spring Security reference documentation is
the best place to learn the available options.

Both thebooki ng- f aces and booki ng- mvc sample applications are configured to use
Spring Security. Configuration is needed at both the Spring and web.xml levels.

Spring configuration

The Spring configuration defines ht t p specifics (such as protected URL s and login/logout
mechanics) and theaut hent i cati on- pr ovi der . For the sample applications, alocal
authentication provider is configured.

<security:http auto-config="true">
<security:formlogin |ogin-page="/spring/login"
| ogi n- processi ng-url ="/spring/| ogi nProcess"
defaul t-target-url="/spring/ main"
aut henti cation-failure-url="/spring/login?login_error=1" />
<security:logout |ogout-url="/spring/logout" |ogout-success-url="/spring/logout-success" />
</ security:http>

<security:authentication-provider>
<security: password- encoder hash="nd5" />
<security:user-service>
<security:user name="keith" password="417c7382b16c395bc25b5da1398cf 076"
aut horiti es="ROLE_USER, ROLE_SUPERVI SOR" />
<security:user name="erw n" password="12430911a8af 075c6f 41c6976af 22b09"
aut horiti es="ROLE_USER, ROLE_SUPERVI SOR' />
<security:user name="jereny" password="57c6chff0d421449be820763f 03139eb"
aut horities="ROLE_USER' />
<security:user name="scott" password="942f 2339bf 50796de535a384f 0dlaf 3e"
aut horities="ROLE _USER' />
</ security: user-service>
</security:authentication-provider>

web.xml Configuration

Intheweb. xm file,afi |t er isdefined tointercept all requests. Thisfilter will listen for
login/logout requests and process them accordingly. It will also catch
AccesDeni edExcept i onsand redirect the user to the login page.

<filter>
<filter-nanme>springSecurityFilterChain</filter-nane>
<filter-class>org.springframework.web.filter.Del egatingFilterProxy</filter-class>
</[filter>

<filter-mappi ng>
<filter-nanme>springSecurityFilterChain</filter-nane>
<url-pattern>/*</url-pattern>

</filter-mappi ng>

Version 2.0.9 47

http://static.springframework.org/spring-security/site/reference.html

48

48

Spring Web Flow

Securing Flows

Flow Inheritance 49

8. Flow Inheritance

8.1. Introduction

Flow inheritance allows one flow to inherit the configuration of another flow. Inheritance can
occur at both the flow and state levels. A common use case is for a parent flow to define global
transitions and exception handlers, then each child flow can inherit those settings.

In order for a parent flow to be found, it must be added to thef | ow-r egi st ry just like any
other flow.

8.2. Is flow inheritance like Java inheritance?

Flow inheritance is similar to Java inheritance in that elements defined in a parent are exposed
viathe child, however, there are key differences.

A child flow cannot override an element from a parent flow. Similar elements between the parent
and child flows will be merged. Unique elements in the parent flow will be added to the child.

A child flow can inherit from multiple parent flows. Javainheritance is limited to a single class.

8.3. Types of Flow Inheritance

Flow level inheritance

Flow level inheritance is defined by the par ent attribute on the f | ow element. The attribute
contains a comma separated list of flow identifiersto inherit from. The child flow will inherit

from each parent in the order it is listed adding elements and content to the resulting flow. The
resulting flow from the first merge will be considered the child in the second merge, and so on.

<f| ow parent="common-transitions, common-states">

State level inheritance

State level inheritance is similar to flow level inheritance, except only one state inherits from the
parent, instead of the entire flow.

Unlike flow inheritance, only asingle parent is allowed. Additionally, the identifier of the flow

state to inherit from must also be defined. The identifiers for the flow and the state within that
flow are separated by a#.

Version 2.0.9 49

50 Spring Web Flow

The parent and child states must be of the same type. For instance a view-state cannot inherit
from an end-state, only another view-state.

<view state id="child-state" parent="parent-flowiparent-viewstate">

8.4. Abstract flows

Often parent flows are not designed to be executed directly. In order to protect these flows from
running, they can be marked asabst r act . If an abstract flow attemptsto run, a
Fl owBui | der Except i on will be thrown.

<flow abstract="true">

8.5. Inheritance Algorithm

When a child flow inherits from it's parent, essentially what happensis that the parent and child
are merged together to create a new flow. There are rules for every element in the Web Flow
definition language that govern how that particular el ement is merged.

There are two types of elements. mergeable and non-mergeable. Mergeable elements will always
attempt to merge together if the elements are similar. Non-mergeable elementsin a parent or
child flow will always be contained in the resulting flow intact. They will not be modified as part
of the merge process.

Note

Paths to external resources in the parent flow should be absolute. Relative paths will
break when the two flows are merged unless the parent and child flow are in the same
directory. Once merged, al relative paths in the parent flow will become relative to
the child flow.

Mergeable Elements

If the elements are of the same type and their keyed attribute are identical, the content of the
parent element will be merged with the child element. The merge algorithm will continue to
merge each sub-element of the merging parent and child. Otherwise the parent element is added
as anew element to the child.

In most cases, elements from a parent flow that are added will be added after elementsin the
child flow. Exceptions to this rule include action elements (evaluate, render and set) which will
be added at the beginning. This allows for the results of parent actions to be used by child
actions.

50 Flow Inheritance

Flow Inheritance 51

Mergeable elements are:

» action-state: id

* atribute: name

* decision-state: id

* end-state: id

 flow: always merges

o if: test

» on-end: always merges

» on-entry: always merges
* on-exit: dways merges

» on-render: always merges
» on-start: always merges
* input: name

* output: name

* secured: attributes

* subflow-state: id

* transition: on and on-exception

e view-state: id

Non-mergeable Elements
Non-mergeable elements are:

* bean-import

 evaluate

* exception-handler

* persistence-context

e render

Version 2.0.9 51

52

o set

52

Spring Web Flow

Flow Inheritance

System Setup 53

9. System Setup

9.1. Introduction

This chapter shows you how to setup the Web Flow system for use in any web environment.

9.2. webflow-config.xsd

Web Flow provides a Spring schema that allows you to configure the system. To use this
schema, include it in one of your infrastructure-layer beans files:

<beans xm ns="http://wwm. springfranmewor k. or g/ schenma/ beans"

xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"

xm ns: webf | ow="http://ww. spri ngframework. or g/ schema/ webf | ow confi g"

xsi : schemalLocati on="
ht t p: // www. spri ngf ramewor k. or g/ schenma/ beans
http: //ww. spri ngfranewor k. or g/ schena/ beans/ spri ng- beans- 2. 5. xsd
http://ww. springfranework. or g/ schena/ webf | ow config
http://ww. spri ngfranework. or g/ schema/ webf | ow confi g/ spri ng-webf | ow confi g-2. 0. xsd">

<l-- Setup Web Fl ow here -->

</ beans>

9.3. Basic system configuration

The next section shows the minimal configuration required to set up the Web Flow system in
your application.

FlowRegistry
Register your flowsinaFl owRegi stry:

<webflow flowregistry id="fl owRegi stry">
<webf | ow: f | ow-| ocation path="/WEB-| NF/f| ows/ booki ng/ booki ng. xm " />
</ webf | ow: f| owregistry>

FlowExecutor
Deploy a FlowExecutor, the central service for executing flows:

<webf | ow f| ow executor id="fl owExecutor" />

See the Spring MV C and Spring Faces sections of this guide on how to integrate the Web Flow

Version 2.0.9 53

54 Spring Web Flow

system with the MV C and JSF environment, respectively.

9.4. flow-registry options

This section explores flow-registry configuration options.

Specifying flow locations

Usethel ocat i on element to specify pathsto flow definitions to register. By default, flows
will be assigned registry identifiers equal to their filenames minus the file extension, unless a
registry bath path is defined.

<webf | ow fl ow | ocation path="/WEB-| NF/fl ows/ booki ng/ booki ng. xm " />

Assigning custom flow identifiers
Specify an id to assign a custom registry identifier to aflow:

<webf | ow fl ow | ocation path="/WEB-|NF/fl ows/ booki ng/ booki ng. xm " id="bookHotel" />

Assigning flow meta-attributes

Usethefl ow definition-attri but es elementtoassign custom meta-attributesto a
registered flow:

<webf | ow fl ow | ocati on path="/WEB-|NF/fl ows/ booki ng/ booki ng. xm ">
<flowdefinition-attributes>
<attribute nanme="caption" val ue="Books a hotel" />
</flowdefinition-attributes>
</ webf | ow fl ow | ocati on>

Registering flows using a location pattern

Usethef | ow | ocat i on- patt er ns element to register flows that match a specific resource
location pattern:

<webf | ow: f | ow-| ocati on-pattern val ue="/WEB-| NF/fl ows/**/*-f| ow. xml " />

Flow location base path

54 System Setup

System Setup 55

Usethe base- pat h attribute to define a base location for al flowsin the application. All flow
locations are then relative to the base path. The base path can be a resource path such as
'/'WEB-INF' or alocation on the classpath like

‘classpath: org/springframework/webflow/samples.

<webfl ow flowregistry id="fl owRegi stry" base-path="/WEB-| NF">
<webf | ow fl ow | ocation path="/hotel s/ booki ng/ booki ng. xm " />
</ webfl ow: fl owregi stry>

With a base path defined, the algorithm that assigns flow identifiers changes slightly. Flows will
now be assigned registry identifiers equal to the the path segment between their base path and
file name. For example, if aflow definition islocated at

'/WEB-INF/hotel ¥booking/booking-flow.xml" and the base path is'/WEB-INF' the remaining
path to this flow is 'hotels/booking’ which becomes the flow id.

Directory per flow definition

Recall it is abest practice to package each flow definition in aunique directory. This
improves modularity, allowing dependent resources to be packaged with the flow
definition. It also prevents two flows from having the same identifiers when using the
convention.

If no base path is not specified or if the flow definition is directly on the base path, flow id
assignment from the filename (minus the extension) is used. For example, if aflow definition file
is 'booking.xml', the flow identifier is simply 'booking'.

L ocation patterns are particularly powerful when combined with aregistry base path. Instead of
the flow identifiers becoming *-flow', they will be based on the directory path. For example:

<webfl ow flowregistry id="fl owRegi stry" base- path /V\EBINF>
<webf | ow fl ow | ocation-pattern value="/**/*-flow xm" />
</ webf | ow: fl owregistry>

In the above example, suppose you had flows locatedin/ user /| ogi n,
[user/registration,/hotel s/booking,and/flights/booki ng directories
within VEB- | NF, you'd end up with flow idsof user /| ogi n,user/regi strati on,
hot el s/ booki ng,andf | i ght s/ booki ng, respectively.

Configuring FlowRegistry hierarchies

Usethepar ent attribute to link two flow registries together in a hierarchy. When the child
registry isqueried, if it cannot find the requested flow it will delegate to its parent.

<l'-- ny-system config.xni ==
<vvebf| ow. flowregistry id="fl ovvRegl ry par ent =" shar edFl owRegi stry" >
<webf | ow fl ow | ocati on path="/WEB-1|NF/fl ows/ booki ng/ booki ng. xm " />

</ webf | ow fl owregi stry>

<!-- shared-config.xm -->
<webf | ow fl owregistry id="sharedFl owRegi stry">

Version 2.0.9 55

56 Spring Web Flow

<!-- dobal flows shared by several applications -->
</ webf | ow: fl owregi stry>

Configuring custom FlowBuilder services

Usethef | ow bui | der - ser vi ces attribute to customize the services and settings used to
build flowsin aflow-registry. If no flow-builder-servicestag is specified, the default service
implementations are used. When the tag is defined, you only need to reference the services you
want to customize.

<webflow flowregistry id="fl owRegi stry" flow builder-services="fl owBuil der Servi ces">
<webf | ow fl ow | ocation path="/WEB-|NF/fl ows/ booki ng/ booki ng. xm " />
</ webf | ow fl owregistry>

<webf | ow: f| ow bui | der-services id="fl owBuil der Servi ces" />

The configurable services arethe conver si on- ser vi ce, expr essi on- par ser, and
vi ew f act ory- creat or . These services are configured by referencing custom beans you
define. For example:

<webf | ow fl ow bui |l der-services id="fl owBuil der Servi ces"
conver si on-servi ce="conver si onSer vi ce"
expr essi on- par ser =" expr essi onPar ser"
vi ewfactory-creator="viewractoryCreator" />

<bean id="conversionService" class="..." [>
<bean id="expressionParser" class="..." />
<bean id="vi ewFactoryCreator" class="..." />

conversion-service

Usetheconver si on- ser vi ce attribute to customize the Conver si onSer vi ce used by
the Web Flow system. Converters are used to convert from one type to another when required
during flow execution. The default ConversionService registers converters for your basic object
types such as numbers, classes, and enums.

expression-parser
Usetheexpr essi on- par ser attribute to customize the Expr essi onPar ser used by the

Web Flow system. The default ExpressionParser uses the Unified EL if available on the
classpath, otherwise OGNL is used.

view-factory-creator

Usethevi ew f act ory- cr eat or attribute to customize the Vi ewFact or yCr eat or used
by the Web Flow system. The default ViewFactoryCreator produces Spring MV C ViewFactories
capable of rendering JSP, Velocity, and Freemarker views.

The configurable settings are devel opnent . These settings are global configuration attributes
that can be applied during the flow construction process.

56 System Setup

System Setup 57

development
Set thistot r ue to switch on flow development mode. Development mode switches on

hot-reloading of flow definition changes, including changes to dependent flow resources such as
message bundles.

9.5. flow-executor options

This section explores flow-executor configuration options.

Attaching flow execution listeners

Usethef | ow execution-1|i steners element to register listeners that observe the
lifecycle of flow executions:

<f | ow execution-1|isteners>
<l istener ref="securitylListener"/>
<listener ref="persistencelistener"/>
</fl ow execution-1|isteners>

Y ou may also configure a listener to observe only certain flows:

<listener ref="securityListener" criteria="securedFl owl, securedFl ow2"/ >

Tuning FlowExecution persistence

Usethef | ow execut i on-repository element to tune flow execution persistence
settings:

max-executions

Tune the max- execut i ons attribute to place a cap on the number of flow executions that can
be created per user session.

max-execution-snapshots
Tunethe max- execut i on- snapshot s attribute to place a cap on the number of history

snapshots that can be taken per flow execution. To disable snapshotting, set thisvalueto 0. To
enable an unlimited number of snapshots, set thisvalueto -1.

Version 2.0.9 57

58

58

Spring Web Flow

System Setup

Spring MV C Integration 59

10. Spring MVC Integration

10.1. Introduction

This chapter shows how to integrate Web Flow into a Spring MV C web application. The
booki ng- mvc sample application is a good reference for Spring MV C with Web Flow. This
application isasimplified travel site that allows usersto search for and book hotel rooms.

10.2. Configuring web.xml

Thefirst step to using Spring MV C isto configurethe Di spat cher Ser vl et inweb. xm .
Y ou typically do this once per web application.

The example below maps all requests that begin with / spri ng/ to the DispatcherServiet. An
i ni t-paramisusedto providethecont ext Confi gLocat i on. Thisisthe configuration

file for the web application.

<servl et >
<servl et-nanme>Spring MVC Di spat cher Servlet</servlet-nane>
<servl et-cl ass>org. springfranmework. web. servl et. Di spat cher Servl et </servl et-cl ass>
<init-paranr
<par am nanme>cont ext Confi gLocati on</ par am nane>
<par am val ue>/ \EB- | NF/ web- appl i cati on-confi g. xm </ param val ue>
</init-paran>
</ servl et>
<servl et - mappi ng>
<servl et-nanme>Spring M/C Di spat cher Servlet</servlet-nane>

<url-pattern>/spring/*</url-pattern>
</ servl et - mappi ng>

10.3. Dispatching to flows

TheDi spat cher Ser vl et maps requests for application resources to handlers. A flow is one
type of handler.

Registering the FlowHandlerAdapter

The first step to dispatching requests to flows is to enable flow handling within Spring MVC. To
this, install the FI owHand| er Adapt er:

<!-- Enabl es Fl owHandl er URL mapping -->

<bean cl ass="org. springfranewor k. webf | ow. mvc. servl et. Fl owHand| er Adapt er " >
<property nanme="fl owExecutor" ref="fl owExecutor" />

</ bean>

Version 2.0.9 59

60 Spring Web Flow

Defining flow mappings

Once flow handling is enabled, the next step is to map specific application resources to your
flows. The ssimplest way to do thisisto define a Fl owHandl er Mappi ng:

<l-- Maps request paths to flows in the fl owRegistry;
e.g. a path of /hotel s/booking |ooks for a floww th id "hotels/booking" -->
<bean cl ass="org. springfranewor k. webf | ow. mvc. servl et. Fl owHand| er Mappi ng" >
<property name="fl owRegi stry" ref="fl owRegi stry"/>

<property name="order" val ue="0"/>
</ bean>

Configuring this mapping allows the Dispatcher to map application resource pathsto flowsin a
flow registry. For example, accessing the resource path / hot el s/ booki ng would resultina
registry query for the flow with id hot el s/ booki ng. If aflow isfound with that id, that flow
will handle the request. If no flow isfound, the next handler mapping in the Dispatcher's ordered
chain will be queried or a"noHandlerFound" response will be returned.

Flow handling workflow

When avalid flow mapping isfound, the Fl owHand!| er Adapt er figures out whether to start
anew execution of that flow or resume an existing execution based on information present the
HTTP request. There are anumber of defaults related to starting and resuming flow executions
the adapter employs.

* HTTPrequest parameters are made available in the input map of al starting flow executions.

* When aflow execution ends without sending afinal response, the default handler will attempt
to start a new execution in the same request.

» Unhandled exceptions are propagated to the Dispatcher unless the exceptionisa
NoSuchF owExecutionException. The default handler will attempt to recover from a
NoSuchFlowExecutionException by starting over a new execution.

Consult the API documentation for FI owHandl er Adapt er for more information. Y ou may

override these defaults by subclassing or by implementing your own FlowHandler, discussed in
the next section.

10.4. Implementing custom FlowHandlers

Fl owHandl er isthe extension point that can be used to customize how flows are executed in a
HTTP servilet environment. A FI owHandl er isused by the Fl owHandl er Adapt er andis
responsible for:

* Returning thei d of aflow definition to execute

60 Spring MV C Integration

Spring MV C Integration 61

» Creating the input to pass new executions of that flow asthey are started
» Handling outcomes returned by executions of that flow as they end
» Handling any exceptions thrown by executions of that flow as they occur

These responsibilities are illustrated in the definition of the
or g. spri ngframewor k. nvc. servl et. Fl owHandl er interface:

public interface FlowHandl er {
public String getFlowd();
public Miutabl eAttributeMap createExecutionl nput Map(Ht t pServl et Request request);

public String handl eExecuti onQut come(Fl owExecuti onQut cone out cone,
Htt pSer vl et Request request, HttpServl et Response response);

public String handl eExcepti on(Fl owException e,
Ht t pSer vl et Request request, HttpServl et Response response);

To implement a FlowHandler, subclass Abst r act FI owHandl er . All these operations are
optional, and if not implemented the defaults will apply. Y ou only need to override the methods
that you need. Specifically:

* Overideget Fl oM d(Ht t pSer vl et Request) when theid of your flow cannot be
directly derived from the HTTP request. By default, the id of the flow to executeis derived
from the pathinfo portion of the request URI. For example,
http://1 ocal host/ app/ hot el s/ booki ng?hot el | d=1 resultsin aflow id of
hot el s/ booki ng by default.

* Overridecr eat eExecut i onl nput Map(Ht t pSer vl et Request) when you need
fine-grained control over extracting flow input parameters from the HttpServletRequest. By
default, all request parameters are treated as flow input parameters.

* Overidehandl eExecut i onQut come when you need to handle specific flow execution
outcomes in a custom manner. The default behavior sends a redirect to the ended flow's URL
to restart a new execution of the flow.

* Override handl eExcept i on when you need fine-grained control over unhandled flow
exceptions. The default behavior attempts to restart the flow when a client attempts to access
an ended or expired flow execution. Any other exception is rethrown to the Spring MVC
ExceptionResolver infrastructure by default.

Example FlowHandler

A common interaction pattern between Spring MVC And Web Flow isfor a Flow to redirect to a
@Controller when it ends. FlowHandlers allow this to be done without coupling the flow
definition itself with a specific controller URL. An example FlowHandler that redirectsto a
Spring MV C Controller is shown below:

Version 2.0.9 61

62 Spring Web Flow

public class Booki ngFl owHandl er extends AbstractFl owHandl er {
public String handl eExecuti onQut cone(Fl owExecuti onQut cone out cone
Ht t pSer vl et Request request, HttpServl et Response response) {
if (outcone.getld().equals("bookingConfirmed")) {
return "/booki ng/ show?booki ngl d=" + out cone. get Qut put (). get (" booki ngl d")
} else {
return "/hotel s/index"

Since this handler only needs to handle flow execution outcomes in a custom manner, nothing
elseisoverridden. Thebooki ngConf i r med outcome will result in aredirect to show the new
booking. Any other outcome will redirect back to the hotels index page.

Deploying a custom FlowHandler

To install acustom FlowHandler, simply deploy it as a bean. The bean name must match the id
of the flow the handler should apply to.

<bean nane="hot el s/ booki ng" cl ass="org. spri ngframewor k. webf | ow. sanpl es. booki ng. Booki ngFl owHandl er" />

With this configuration, accessing the resource / hot el s/ booki ng will launch the

hot el s/ booki ng flow using the custom BookingFlowHandler. When the booking flow ends,
the FlowHandler will process the flow execution outcome and redirect to the appropriate
controller.

FlowHandler Redirects

A FlowHandler handling a FlowExecutionOutcome or FlowEXxception returnsa St r i ng to
indicate the resource to redirect to after handling. In the previous example, the

Booki ngFl owHandl er redirectsto the booki ng/ showresource URI for

booki ngConf i r med outcomes, and the hot el s/ i ndex resource URI for all other
outcomes.

By default, returned resource locations are relative to the current servlet mapping. This alows
for aflow handler to redirect to other Controllersin the application using relative paths. In
addition, explicit redirect prefixes are supported for cases where more control is needed.

The explicit redirect prefixes supported are:

» servl etRel ati ve: -redirect to aresource relative to the current servlet

» cont ext Rel ati ve: -redirect to aresource relative to the current web application context
path

 serverRel ati ve: -redirect to aresource relative to the server root

* http:// orhttps:// -redirecttoafully-qualified resource URI

62 Spring MV C Integration

Spring MV C Integration 63

These same redirect prefixes are also supported within aflow definition when using the
ext er nal Redi r ect : directivein conjunction with a view-state or end-state; for example,
vi ew="ext ernal Redi rect: http://springframework. org"”

10.5. View Resolution

Web Flow 2 maps selected view identifiers to files located within the flow's working directory
unless otherwise specified. For existing Spring MV C + Web Flow applications, an external

Vi ewResol ver islikely already handling this mapping for you. Therefore, to continue using
that resolver and to avoid having to change how your existing flow views are packaged,
configure Web Flow as follows:

<webfl ow flowregistry id="fl owRegi stry" flow builder-services="fl owBuil der Servi ces">
<webf | ow | ocation path="/WEB- | NF/ hot el s/ booki ng/ booki ng. xm " />
</ webf | ow: fl owregi stry>
<webf |l ow fl ow bui | der-services id="fl owBuil der Servi ces" viewfactory-creator="nvcVi ewFactoryCreator"/>
<bean id="nvcVi ewFactoryCreator" class="org.springframework. webf| ow. mvc. bui | der. MrcVi ewFact or yCr eat or ">

<property nanme="vi ewResol vers" ref="nyExi stingVi ewResol ver ToUseFor Fl ows"/ >
</ bean>

The MvcViewFactoryCreator is the factory that allows you to configure how the Spring MVC
view system is used inside Spring Web Flow. Use it to configure existing ViewResolvers, as
well as other services such as a custom MessageCodesResolver. Y ou may also enable data
binding use Spring MV C's native BeanWrapper by setting the useSpr i ngBi ndi ng flag to
true. Thisisan alternative to using OGNL or the Unified EL for view-to-model data binding. See
the JavaDoc API of this class for more information.

10.6. Signaling an event from a View

When aflow enters aview-state it pauses, redirects the user to its execution URL, and waits for a
user event to resume. Events are generally signaled by activating buttons, links, or other user
interface commands. How events are decoded server-side is specific to the view technology in
use. This section shows how to trigger events from HTML-based views generated by templating
engines such as JSP, Velocity, or Freemarker.

Using a named HTML button to signal an event

The example below shows two buttons on the same form that signal pr oceed and cancel
events when clicked, respectively.

<input type="submt" nanme="_event|d_proceed" val ue="Proceed" />
<input type="submt" name="_eventld_cancel" val ue="Cancel" />

When a button is pressed Web Flow finds arequest parameter name beginning with
event | d and treats the remaining substring as the event id. So in this example, submitting

Version 2.0.9 63

64 Spring Web Flow

_event |1 d_proceed becomespr oceed. This style should be considered when there are
several different events that can be signaled from the same form.

Using a hidden HTML form parameter to signal an event
The example below shows aform that signals the pr oceed event when submitted:

<input type="submt" val ue="Proceed" />
<input type="hidden" nanme="_eventl|d" val ue="proceed" />

Here, Web Flow simply detectsthe special _event | d parameter and uses its value as the event
id. This style should only be considered when there is one event that can be signaled on the form.

Using a HTML link to signal an event
The example below shows alink that signalsthe cancel event when activated:

Cancel </ a>

Firing an event resultsin aHTTP request being sent back to the server. On the server-side, the
flow handles decoding the event from within its current view-state. How this decoding process
works is specific to the view implementation. Recall a Spring MV C view implementation simply
looks for arequest parameter named _event | d. If no_event | d parameter isfound, the view
will look for a parameter that startswith _event | d_ and will use the remaining substring as
the event id. If neither cases exist, no flow event is triggered.

64 Spring MV C Integration

Spring JavaScript Quick 65
Reference

11. Spring JavaScript Quick Reference

11.1. Introduction

Spring Javascript (spring-js) is alightweight abstraction over common JavaScript toolkits such as
Dojo. It aimsto provide a common client-side programming model for progressively enhancing a
web page with rich widget behavior and Ajax remoting.

Use of the Spring JS API is demonstrated in the the Spring MV C + Web Flow version of the
Spring Travel reference application. In addition, the JSF components provided as part of the
Spring Faces library build on Spring.js.

11.2. Serving Javascript Resources

Spring JS provides ageneric Resour ceSer vl et to serve web resources such as JavaScript
and CSSfilesfrom jar files, as well as the webapp root directory. This servlet provides a
convenient way to serve Spring.jsfilesto your pages. To deploy this servlet, declare the
followinginweb. xni :

<!-- Serves static resource content from.jar files such as spring-js.jar -->
<servl et >

<servl et - name>Resour ce Servl et </ servl et - nane>

<servl et-class>org. springframework.js.resource. ResourceServl et</servlet-class>
</servlet>
<l-- Map all /resources requests to the Resource Servlet for handling -->
<servl et - mappi ng>

<servl et-nane>Resource Servlet</servlet-nane>

<url -pattern>/resources/*</url-pattern>
</ servl et - mappi ng>

11.3. Including Spring Javascript in a Page

Spring JSis designed such that an implementation of its API can be built for any of the popular
Javascript toolkits. Theinitial implementation of Spring.js builds on the Dojo toolkit.

Using Spring Javascript in a page requires including the underlying toolkit as normal, the

Spri ng. j s baseinterfacefile, andthe Spri ng- (li brary i npl enentation).j s file
for the underlying toolkit. As an example, the following includes obtain the Dojo implementation
of Spring.jsusing the Resour ceSer vl et :

<script type="text/javascript" src="<c:url value="/resources/dojo/dojo.js" />"> </script>
<script type="text/]javascript" src="<c:url value="/resources/spring/Spring.js" />"> </script>
<script type="text/javascript" src="<c:url value="/resources/spring/Spring-Dojo.js" />"> </script>

When using the widget system of an underlying library, typically you must also include some

Version 2.0.9 65

66 Spring Web Flow

CSS resources to obtain the desired look and feel. For the booking-mvc reference application,
Dojo'st undr a. css isincluded:

<link type="text/css" rel ="stylesheet" href="<c:url value="/resources/dijit/thenmes/tundra/tundra.css" />" />

11.4. Spring Javascript Decorations

A central concept in Spring Javascript is the notion of applying decorations to existing DOM
nodes. Thistechnique is used to progressively enhance a web page such that the page will still be
functional in aless capable browser. TheaddDecor at i on method is used to apply
decorations.

The following example illustrates enhancing a Spring MV C <f or m i nput > tag with rich
suggestion behavior:

<forminput id="searchString" path="searchString"/>
<script type="text/javascript">
Spring. addDecor ati on(new Spri ng. El enment Decor ati on({
el ementld: "searchString",
wi dget Type: "dijit.form ValidationTextBox",
wi dget Attrs: { pronptMessage : "Search hotels by name, address, city, or zip." }}));
</script>

The El enment Decor at i on isused to apply rich widget behavior to an existing DOM node.
This decoration type does not aim to completely hide the underlying toolkit, so the toolkit's
native widget type and attributes are used directly. This approach allows you to use a common
decoration model to integrate any widget from the underlying toolkit in a consistent manner. See
thebooki ng- mvc reference application for more examples of applying decorationsto do
things from suggestions to client-side validation.

When using the El enent Decor at i on to apply widgets that have rich validation behavior, a
common need isto prevent the form from being submitted to the server until validation passes.
This can be done with the Val i dat eAl | Decor ati on:

<input type="submt" id="proceed" nanme="_event|d_proceed" val ue="Proceed" />
<script type="text/javascript">

Spring. addDecor ati on(new Spring. Val i dateAl | Decoration({ elenmentld:' proceed', event:'onclick' }));
</script>

This decorates the "Proceed" button with a special onclick event handler that fires the client side
validators and does not allow the form to submit until they pass successfully.

An Aj axEvent Decor at i on applies aclient-side event listener that fires aremote Ajax
request to the server. It also auto-registers a callback function to link in the response:

Previous
<script type="text/javascript">
Spring. addDecor ati on(new Spring. Aj axEvent Decor ati on({
el ementld: "prevLink",
event: "onclick",
parans: { fragnments: "body" }

Spring JavaScript Quick
66 Reference

Spring JavaScript Quick 67
Reference

</script>

This decorates the onclick event of the "Previous Results’ link with an Ajax call, passing along a
special parameter that specifies the fragment to be re-rendered in the response. Note that this link
would still be fully functional if Javascript was unavailable in the client. (See the section on
Handling Ajax Requests for details on how this request is handled on the server.)

It is also possible to apply more than one decoration to an element. The following example
shows a button being decorated with Ajax and validate-all submit suppression:

<input type="submt" id="proceed" nane="_event|d_proceed" val ue="Proceed" />
<script type="text/javascript">

Spri ng. addDecor ati on(new Spring. Val i dat eAl | Decor ation({el ement|d:"' proceed', event:'onclick'}));

Spring. addDecor ati on(new Spring. Aj axEvent Decoration({el enmentld:' proceed', event:'onclick', formd:'booking' , parans:{
</script>

It is also possible to apply a decoration to multiple elements in a single statement using Dojo's
query API. The following example decorates a set of checkbox elements as Dojo Checkbox
widgets:

<div id="anenities">
<form checkbox path="amenities" val ue="OCEAN_VI EW | abel ="Ccean View' /></|i>
<form checkbox path="anenities" val ue="LATE CHECKOUT" | abel ="Late Checkout" /></|i>
<f orm checkbox path="anenities" value="M N BAR' | abel ="M nibar" /></1i>
<script type="text/javascript">
doj o. query("#anenities I nput[type='checkbox']").forEach(function(elenent) {
Spri ng. addDecor ati on(new Spri ng. El ement Decor ati on({

el ementld: elenent.id,

wi dget Type : "dijit.form CheckBox",

wi dget Attrs : { checked : el ement.checked }

)

</ scri bt>
</ di v>

11.5. Handling Ajax Requests

Spring Javascript's client-side Ajax response handling is built upon the notion of receiving
"fragments’ back from the server. These fragments are just standard HTML that is meant to
replace portions of the existing page. The key piece needed on the server is away to determine
which pieces of afull response need to be pulled out for partial rendering.

In order to be able to render partial fragments of afull response, the full response must be built
using a templating technology that allows the use of composition for constructing the response,
and for the member parts of the composition to be referenced and rendered individually. Spring
Javascript provides some simple Spring MV C extensions that make use of Tilesto achieve this.
The same technique could theoretically be used with any templating system supporting
composition.

Spring Javascript's Ajax remoting functionality is built upon the notion that the core handling
code for an Ajax request should not differ from a standard browser request, thus no special
knowledge of an Ajax request is needed directly in the code and the same hanlder can be used for
both styles of request.

Version 2.0.9 67

68 Spring Web Flow

Providing a Library-Specific AjaxHandler

The key interface for integrating various Ajax libraries with the Ajax-aware behavior of Web
Flow (such as not redirecting for a partial page update) is

org. springframework.js. Aj axHandl er. A Spri ngJavascri pt Aj axHandl er is
configured by default that is able to detect an Ajax request submitted via the Spring JS
client-side APl and can respond appropriately in the case where aredirect is required. In order to
integrate adifferent Ajax library (be it a pure JavaScript library, or a higher-level abstraction
such as an Ajax-capable JSF component library), a custom Aj axHandl er can beinjected into
the FIl owHand| er Adapt er or Fl owControl | er.

Handling Ajax Requests with Spring MVC Controllers

In order to handle Ajax requests with Spring MV C controllers, all that is needed isthe
configuration of the provided Spring MV C extensions in your Spring application context for
rendering the partial response (note that these extensions require the use of Tiles for templating):

<bean id="til esVi ewResol ver" class="org.springframework.js.ajax.A axU | BasedVi ewResol ver">
<property nanme="vi ewCl ass" val ue="org. spri ngfranmewor k. webf | ow. mvc. vi ew. Fl owAj axTi | esVi ew'/ >
</ bean>

This configuresthe Aj axUr | BasedVi ewResol ver whichinturn interprets Ajax requests
and creates FI owA] axTi | esVi ew objects to handle rendering of the appropriate fragments.
Note that FI owAj axTi | esVi ewis capable of handling the rendering for both Web Flow and
pure Spring MV C requests. The fragments correspond to individual attributes of a Tiles view
definition. For example, take the following Tiles view definition:

<definition name="hotel s/index" extends="standardLayout">
<put-attribute name="body" val ue="index. body" />
</definition>
<definition name="index. body" tenplate="/WEB-|NF/ hotel s/index.jsp">
<put-attribute name="hot el Sear chFornm' val ue="/WEB- | NF/ hot el s/ hot el Sear chForm j sp" />

<put-attribute name="booki ngsTabl e" val ue="/WEB- | NF/ hot el s/ booki ngsTabl e. jsp" />
</definition>

An Ajax request could specify the "body", "hotel SearchForm™ or "bookingsTable" to be rendered
as fragments in the request.

Handling Ajax Requests with Spring MVC + Spring Web Flow

Spring Web Flow handles the optional rendering of fragments directly in the flow definition
language through use of ther ender element. The benefit of this approach is that the selection
of fragments is completely decoupled from client-side code, such that no special parameters need
to be passed with the request the way they currently must be with the pure Spring MVC
controller approach. For example, if you wanted to render the "hotel SearchForm" fragment from
the previous example Tiles view into arich Javascript popup:

Spring JavaScript Quick
68 Reference

Spring JavaScript Quick
Reference

<view state id="changeSearchCriteria" view="enterSearchCriteria.xhtm" popup="true">
<on-entry>
<render fragnments="hotel SearchFornm' />
</ on-entry>
<transition on="search" to="revi ewtotel s">
<eval uate expression="searchCriteria.resetPage()"/>
</transition>
</ vi ew st at e>

Version 2.0.9

69

69

70

70

Spring Web Flow

Spring JavaScript Quick
Reference

JSF Integration 71

12. JSF Integration

12.1. Introduction

Spring Faces is Spring's JSF integration module that simplifies using JSF with Spring. It lets you
use the JSF Ul Component Model with Spring MV C and Spring Web Flow controllers.

Spring Faces also includes a small Facelets component library that provides Ajax and client-side
validation capabilities. This component library builds on Spring Javascript, a Javascript
abstraction framework that integrates Dojo as the underlying Ul toolkit.

12.2. Spring-centric Integration Approach

Spring Faces combines the strengths of JSF, its Ul component model, with the strengths of
Spring, its controller and configuration model. This brings you all the strengths of JSF without
any of the weaknesses.

Spring Faces provides a powerful supplement to a number of the standard JSF facilities,
including:

1. managed bean facility

2. scope management
3. event handling
4. navigation rules
5. easy modularization and packaging of views
6. cleaner URLS
7. model-level validation

8. client-side validation and Ul enhancement

9. Ajax partial page updates and full navigation

10.progressive enhancement and graceful degradation

Using these features will significantly reduce the amount of configuration required in
faces-config.xml while providing a cleaner separation between the view and controller layer and
better modularization of your application’s functional responsibilities. These use of these features
are outlined in the sections to follow. As the majority of these features build on the flow
definition language of Spring Web Flow, it is assumed that you have an understanding of the
foundations presented in Defining Flows .

Version 2.0.9 71

72 Spring Web Flow

12.3. Configuring web.xml

The first step to using Spring Facesisto route requeststo the Di spat cher Ser vl et inthe
web. xm file. Inthis example, we map all URLsthat begin with/ spri ng/ totheservlet. The
servlet needs to be configured. Ani ni t - par amisused in the servlet to pass the

cont ext Confi gLocat i on . Thisisthe location of the Spring configuration for your
application.

<servl et>
<servl et-nanme>Spring M/C Di spat cher Servlet</servlet-nane>
<servl et-cl ass>org. spri ngframewor k. web. servl et . Di spat cher Servl et </ servl et -cl ass>
<init-paranp
<par am nanme>cont ext Confi gLocati on</ par am nane>
<param val ue>/ \EB- | NF/ web- appl i cati on-confi g. xm </ param val ue>
</init-paranp
<l oad- on- st art up>1</1| oad- on- st art up>
</ servl et >

<servl et - mappi ng>
<servl et-name>Spring WC Di spat cher Servl et</servlet-name>
<url-pattern>/spring/*</url-pattern>

</ servl et - mappi ng>

In order for JSF to bootstrap correctly, the Faces Ser vl et must be configured inweb. xm as
it normally would even though you generally will not need to route requests through it at all
when using Spring Faces.

<!-- Just here so the JSF inplenentation can initialize, *not* used at runtine -->
<servl et >

<servl et - nane>Faces Servl et </servl et - nane>

<servl et-cl ass>j avax. f aces. webapp. FacesSer vl et </ servl et - cl ass>

<l oad- on- st artup>1</1 oad- on-start up>
</ servl et >

<l-- Just here so the JSF inplenentation can initialize -->
<servl et - mappi ng>
<servl et - nane>Faces Servl et </servl et - nane>
<url-pattern>*. faces</url-pattern>
</ servl et - mappi ng>

When using the Spring Faces components, you also need to configure the Spring JavaScript
Resour ceSer vl et sothat CSS and JavaScript resources may be output correctly by the
components. This servlet must be mapped to /resources/* in order for the URL's rendered by the
components to function correctly.

<l-- Serves static resource content from.jar files such as spring-faces.jar -->
<servl et >
<ser vl et - name>Resour ce Servl et </ servl et - name>
<servlet-class>org. springframework.js.resource. ResourceServlet</servlet-class>
<l oad- on- st art up>0</ | oad- on-start up>
</ servlet>

<!-- Map all /resources requests to the Resource Servlet for handling -->
<servl et - mappi ng>
<ser vl et - name>Resour ce Servl et </ servl et - name>

<url-pattern>/resources/*</url-pattern>
</ servl et - mappi ng>

The Spring Faces components require the use of Facelets instead of JSP, so the typical Facelets
configuration must be added as well when using these components.

72 JSF Integration

JSF Integration 73

1-- Use JSF view tenpl ates saved as *.xhtml, for use with Facelets -->
<cont ext - par an®>

<par am nane>j avax. f aces. DEFAULT_SUFFI X</ par am nane>

<par am val ue>. xht m </ par am val ue>
</ cont ext - par an>

For optimal page-loading performance, the Spring Faces component library includes afew
special components. i ncl udeSt yl es andi ncl udeScr i pt s. These components will
eagerly load the neccessary CSS stylesheets and JavaScript files at the position they are placed in
your JSF view template. In accordance with the recommendations of the Y ahoo Performance
Guildlines, these two tags should be placed in the head section of any page that uses the Spring
Faces components. For example:

<! DOCTYPE htm PUBLIC "-//WBC//DTD XHTM. 1.0 Transitional //EN'" "http://ww. w3. org/ TR/ xhtm 1/ DTD/ xht m 1-transi ti onal . dtd"
<f:view xm ns="http://ww. w3. or g/ 1999/ xht m "
xm ns:ui ="http://java. sun. conijsf/facel ets"
xm ns: f="http://java.sun.com jsf/core"
xm ns:c="http://java.sun.comjstl/core"
xm ns: sf="http://ww. springframework. org/tags/faces"
content Type="text/htm " encodi ng="UTF-8">

<htm >

<head>
<nmeta http-equiv="Content-Type" content="text/htm; charset=UTF-8" />
<title>Spring Faces: Hotel Booking Sanple Application</title>
<sf:includeStyles />
<sf:includeScripts />
<ui :insert nane="headl ncl udes"/>

</ head>

</ htm >

</f:view>

This shows the opening of atypical Facelets XHTML layout template that uses these
components to force the loading of the needed CSS and JavaScript resources at the ideal
position.

Thei ncl udeSt yl es component includes the necessary resources for the Dojo widget theme.
By default, it includes the resources for the "tundra’ theme. An alternate theme may be selected
by setting the optional "theme" and "themePath" attributes on thei ncl udeSt yl es
component. For example:

<sf:includeStyl es themePat h="/styles/" thenme="foobar"/>

will try to load a CSS stylesheet at "/styles/foobar/foobar.css' using the Spring JavaScript
ResourceServlet.

12.4. Configuring Web Flow to render JSF views

The next step isto configure Web Flow to render JSF views. To do this, in your Spring Web
Flow configuration include the f aces namespace and link in the faces
fl ow bui | der - services:

<?xm version="1.0" encodi ng="UTF-8"?>
<beans xm ns="http://wwm. springfranmewor k. or g/ schema/ beans"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"

Version 2.0.9 73

74 Spring Web Flow

xm ns: webf | ow="http://ww. springfranmewor k. or g/ schema/ webf | ow confi g"
xm ns: faces="http://ww. spri ngframework. or g/ schema/ f aces"
xsi : schemalLocati on="
http://ww. springfranework. or g/ schena/ beans
http: //ww. spri ngfranewor k. or g/ schena/ beans/ spri ng- beans- 2. 5. xsd
http://ww. springfranework. or g/ schenma/ webf | ow config
htt p: // ww. spri ngfranewor k. or g/ schenma/ webf | ow confi g/ spri ng- webf | ow confi g-2. 0. xsd
http://ww. springfranework. org/ schena/ f aces
http://ww. spri ngfranework. org/ schena/ f aces/ spri ng-faces-2. 0. xsd" >

<!-- Executes flows: the central entry point into the Spring Web Fl ow system -->
<webf | ow: f | ow executor id="fl owExecutor" />

<l-- The registry of executable flow definitions -->

<webflow flowregistry id="fl owRegistry" flow builder-services="facesFl owBui |l der Servi ces" base-pat h="/WEB-| NF">
<webf | ow: f | ow-| ocati on-pattern value="**/*-f]ow. xm " />

</ webf | ow fl owregistry>

<!-- Configures the Spring Wb Flow JSF integration -->
<faces: flow buil der-services id="facesFl owBui | der Servi ces" />

</ beans>

Thef aces: fl ow bui | der - servi ces tag aso configures severa other defaults
appropriate for a JSF environment. Specifically, the Unified EL is configured as the default
Expression Language.

See the swf-booking-faces reference application in the distribution for a complete working
example.

12.5. Configuring faces-config.xml

The only configuration needed inf aces- confi g. xm isspecific to the use of Facelets. If
you are using JSP and not using the Spring Faces components, you do not need to add anything
specific to Spring Facesto your f aces- confi g. xm

<f aces-confi g>
<application>
<l-- Enabl es Facelets -->
<vi ew handl er >com sun. f acel et s. Facel et Vi ewHandl| er </ vi ew handl| er >
</ appl i cation>
</ faces-config>

12.6. Replacing the JSF Managed Bean Facility

Spring Faces allows you to completely replace the JSF managed bean facility with a combination
of flow-managed variables and Spring managed beans. It gives you a good deal more control
over the lifecycle of your managed objects with well-defined hooks for initialization and
execution of your domain model. Additionally, since you are presumably already using Spring
for your business layer, it reduces the conceptual overhead of having to maintain two different
managed bean models.

In doing pure JSF devel opment, you will quickly find that request scope is not long-lived enough
for storing conversational model objects that drive complex event-driven views. The only
available option isto begin putting things into session scope, with the extra burden of needing to
clean the objects up before progressing to another view or functional area of the application.

74 JSF Integration

JSF Integration 75

What isreally needed is a managed scope that is somewhere between request and session scope.
Fortunately web flow provides such extended facilities.

Using Flow Variables

The easiest and most natural way to declare and manage the model is through the use of flow
variables . You can declare these variables at the beginning of the flow:

<var nane="searchCriteria" class="com nyconpany. nyapp. hotel s. search. SearchCriteria"/>

and then reference this variable in one of the flow's JSF view templates through EL :

<h:input Text id="searchString" value="#{searchCriteria.searchString}"/>

Note that you do not need to prefix the variable with its scope when referencing it from the
template (though you can do so if you need to be more specific). As with standard JSF beans, all
available scopes will be searched for a matching variable, so you could change the scope of the
variable in your flow definition without having to modify the EL expressions that reference it.

Y ou can aso define view instance variables that are scoped to the current view and get cleaned
up automatically upon transitioning to another view. Thisis quite useful with JSF asviews are
often constructed to handle multiple in-page events across many requests before transitioning to
another view.

To define aview instance variable, you can usethevar elementinsideavi ew st at e
definition:

<viewstate id="enterSearchCriteria">
<var nanme="searchCriteria" class="com nyconpany. nyapp. hotel s. search. SearchCriteria"/>
</ vi ew st at e>

Using Scoped Spring Beans

Though defining autowired flow instance variables provides nice modul arization and readability,
occasions may arise where you want to utilize the other capabilities of the Spring container such
as AOP. In these cases, you can define abean in your Spring ApplicationContext and giveit a
specific web flow scope:

<bean id="searchCriteria" class="com nyconpany. nyapp. hotel s. search. SearchCriteria" scope="flow'/>

The major difference with this approach is that the bean will not be fully initialized until it isfirst
accessed viaan EL expression. This sort of lazy instantiation via EL is quite similar to how JSF
managed beans are typically allocated.

Version 2.0.9 75

76 Spring Web Flow

Manipulating The Model

The need to initialize the model before view rendering (such as by loading persistent entities
from a database) is quite common, but JSF by itself does not provide any convenient hooks for
such initialization. The flow definition language provides a natural facility for thisthrough its
Actions . Spring Faces provides some extra conveniences for converting the outcome of an
action into a JSF-specific data structure. For example:

<on-render >
<eval uat e expressi on="booki ngServi ce. fi ndBooki ngs(currentUser. nane)"
resul t ="vi ewScope. booki ngs" result-type="dataMdel " />
</ on-r ender >

Thiswill take the result of the booki ngSer vi ce. fi ndBooki ngs method anwrapitina
custom JSF DataM odel so that the list can be used in a standard JSF DataT able component:

<h: dat aTabl e i d="booki ngs" styl eC ass="summary" val ue="#{booki ngs}" var="booki ng"
render ed="#{ booki ngs. rowCount > 0}">
<h: col um>
<f:facet name="header">Nane</f:facet>
#{ booki ng. hot el . nane}
</ h: col um>
<h: col um>
<f:facet name="header">Confirmation nunber</f:facet>
#{ booki ng. i d}
</ h: col um>
<h: col um>
<f:facet nanme="header">Action</f:facet>
<h: commandLi nk i d="cancel" val ue="Cancel" action="cancel Booki ng" />
</ h: col um>
</ h: dat aTabl e>

The custom DataM odel provides some extra conveniences such as being serializable for storage
beyond request scope and access to the currently selected row in EL expressions. For example,
on postback from aview where the action event was fired by a component within a DataTable,
you can take action on the selected row's model instance:

<transition on="cancel Booki ng">
<eval uat e expressi on="booki ngServi ce. cancel Booki ng(booki ngs. sel ect edRow) " />
</transition>

12.7. Handling JSF Events With Spring Web Flow

Spring Web Flow allows you to handle JSF action events in a decoupled way, requiring no direct
dependenciesin your Java code on JSF API's. In fact, these events can often be handled
completely in the flow definiton language without requiring any custom Java action code at all.
This allows for amore agile development process since the artifacts being manipulated in wiring
up events (JSF view templates and SWF flow definitions) are instantly refreshable without
requiring a build and re-deploy of the whole application.

Handling JSF In-page Action Events

76 JSF Integration

JSF Integration 77

A simple but common case in JSF is the need to signal an event that causes manipulation of the
model in some way and then redisplays the same view to reflect the changed state of the model.
The flow definition language has specia support for thisinthet r ansi t i on element.

A good example of thisis atable of paged list results. Suppose you want to be able to load and
display only a portion of alarge result list, and alow the user to page through the results. The
initial vi ew st at e definition to load and display the list would be:

<view state id="revi ewHot el s">
<on-r ender >
<eval uat e expressi on="booki ngServi ce.findHotel s(searchCriteria)"
resul t ="vi ewScope. hotel s" resul t-type="dataMdel " />
</ on-render >
</ vi ew st at e>

Y ou construct a JSF DataT able that displays the current hot el s list, and then place a"More
Results" link below the table:

<h: commandLi nk id="next PagelLi nk" val ue="Mre Results" action="next"/>

This commandLink signals a"next" event from its action attribute. Y ou can then handle the
event by adding to thevi ew- st at e definition:

<viewstate id="revi ewtot el s">
<on-r ender >
<eval uat e expressi on="booki ngServi ce. fi ndHot el s(searchCriteria)"
resul t ="vi ewScope. hotel s" resul t-type="dataMdel " />
</ on-render >
<transition on="next">
<eval uat e expression="searchCriteria.nextPage()" />
</transition>
</ vi ew st at e>

Here you handle the "next" event by incrementing the page count on the searchCriteriainstance.
Theon-r ender action isthen called again with the updated criteria, which causes the next
page of results to be loaded into the DataM odel. The same view is re-rendered since there was no
t o attribute onthet r ansi t i on element, and the changes in the model are reflected in the
view.

Handling JSF Action Events

The next logical level beyond in-page events are events that require navigation to another view,
with some manipulation of the model along the way. Achieving thiswith pure JSF would require
adding a navigation rule to faces-config.xml and likely some intermediary Java code in a JSF
managed bean (both tasks requiring a re-deploy). With the flow defintion language, you can
handle such a case concisely in one place in a quite similar way to how in-page events are
handled.

Continuing on with our use case of manipulating a paged list of results, suppose we want each

row in the displayed DataTable to contain alink to a detail page for that row instance. Y ou can
add a column to the table containing the following commandLi nk component:

Version 2.0.9 77

78 Spring Web Flow

<h: commandLi nk id="vi ewHot el Li nk" val ue="View Hotel" action="select"/>

Thisraisesthe "select”" event which you can then handle by adding another t r ansi ti on
element to the existingvi ew st at e :

<viewstate id="revi ewHot el s">
<on-r ender >
<eval uat e expressi on="booki ngServi ce. findHotel s(searchCriteria)"
resul t ="vi ewScope. hotel s" result-type="dataMdel " />
</ on-render >
<transition on="next">
<eval uat e expression="searchCriteria.nextPage()" />
</transition>
<transition on="select" to="revi ewHotel ">
<set nane="fl owScope. hotel" val ue="hotel s. sel ect edRow' />
</transition>
</ vi ew st at e>

Here the "select” event is handled by pushing the currently selected hotel instance from the
DataTable into flow scope, so that it may be referenced by the "reviewHotel" vi ew st at e .

Performing Model Validation

JSF provides useful facilities for validating input at field-level before changes are applied to the
model, but when you need to then perform more complex validation at the model-level after the
updates have been applied, you are generally left with having to add more custom code to your

JSF action methods in the managed bean. Validation of this sort is something that is generally a
responsibility of the domain model itself, but it is difficult to get any error messages propagated
back to the view without introducing an undesirable dependency on the JSF API in your domain

layer.

With Spring Faces, you can utilize the generic and low-level MessageCont ext inyour
business code and any messages added there will then be available to the FacesCont ext at
render time.

For example, suppose you have aview where the user enters the necessary details to complete a
hotel booking, and you need to ensure the Check In and Check Out dates adhere to a given set of
business rules. Y ou can invoke such model-level validation from at r ansi ti on element:

<vi ew state id="enterBooki ngDetails">
<transition on="proceed" to="revi ewBooking">
<eval uat e expressi on="booki ng. val i dat eEnt er Booki ngDet ai | s(messageContext)" />
</transition>
</ vi ew st at e>

Here the "proceed" event is handled by invoking a model-level validation method on the booking
instance, passing the generic MessageCont ext instance so that messages may be recorded.
The messages can then be displayed along with any other JSF messages with the h: nessages
component,

Handling Ajax Events

78 JSF Integration

JSF Integration 79

Spring Faces provides some special Ul Command components that go beyond the standard JSF
components by adding the ability to do Ajax-based partial view updates. These components
degrade gracefully so that the flow will still be fully functional by falling back to full page
refreshes if a user with aless capable browser views the page.

Note
Though the core JSF support in Spring Facesis JSF 1.1-compatible, the Spring Faces
Ajax components require JSF 1.2.

Revisiting the earlier example with the paged table, you can change the "More Results" link to
use an Ajax request by replacing the standard cormandBut t on with the Spring Faces version
(note that the Spring Faces command components use Ajax by default, but they can alternately
be forced to use anormal form submit by setting ajaxEnabled="false" on the component):

<sf:commuandLi nk i d="next PageLi nk" val ue="More Results" action="next" />

Thisevent is handled just as in the non-Ajax case with thet r ansi t i on element, but now you
will add aspecia r ender action that specifies which portions of the component tree need to be
re-rendered:

<viewstate id="revi ewtHot el s">
<on-r ender >
<eval uat e expressi on="booki ngServi ce. findHotel s(searchCriteria)"
resul t ="vi ewScope. hotel s" result-type="dataMdel " />
</ on-render >
<transition on="next">
<eval uat e expressi on="searchCriteria.nextPage()" />
<render fragnments="hotels: searchResul t sFragnent" />
</transition>
</ vi ew st at e>

Thefragment s="hot el s: sear chResul t sFragnment " isan instruction that will be
interpreted at render time, such that only the component with the JSF clientld
"hotels:searchResultsFragment” will be rendered and returned to the client. This fragment will
then be automatically replaced in the page. Thef r agnent s attribute can be a
comma-delimited list of ids, with each id representing the root node of a subtree (meaning the
root node and all of its children) to be rendered. If the "next" event isfired in anon-Ajax request
(i.e., if JavaScript isdisabled on the client), ther ender action will be ignored and the full page
will be rendered as normal.

In addition to the Spring Faces commandLi nk component, there is a corresponding
comandBut t on component with the same functionality. Thereis also aspecial aj axEvent
component that will raise a JSF action even in response to any client-side DOM event. See the
Spring Faces tag library docs for full details.

An additional built-in feature when using the Spring Faces Ajax components is the ability to
have the response rendered inside a rich modal popup widget by setting popup="t r ue" ona
view state.

<view state id="changeSearchCriteria" view="enterSearchCriteria.xhtm" popup="true">
<on-entry>

Version 2.0.9 79

80 Spring Web Flow

<render fragnments="hotel SearchFragment" />
</on-entry>
<transition on="search" to="revi ewotel s">
<eval uat e expression="searchCriteria.resetPage()"/>
</transition>
</ vi ew st at e>

If the "changeSearchCriteria" vi ew st at e isreached as the result of an Ajax-request, the
result will be rendered into arich popup. If JavaScript is unavailable, the request will be
processed with afull browser refresh, and the "changeSearchCriteria’ view will be rendered as
normal.

12.8. Enhancing The User Experience With Rich Web
Forms

JSF and Web Flow combine to provide an extensive server-side validation model for your web
application, but excessive roundtrips to the server to execute this validation and return error
messages can be a tedious experience for your users. Spring Faces provides a number of
client-side rich validation controls that can enhance the user experience by applying simple
validations that give immediate feedback. Some simple examples are illustrated below. See the
Spring Faces taglib docs for a complete tag reference.

Validating a Text Field

Simple client-side text validation can be applied with thecl i ent Text Val i dat or
component:

<sf:clientTextValidator required="true">
<h:input Text id="creditCardNanme" val ue="#{booking. creditCardNane}" required="true"/>
</ sf:clientTextValidator>

Thiswill apply client-side required validation to the child i nput Text component, giving the
user aclear indicator if the field is left blank.

Validating a Numeric Field

Simple client-side numeric validation can be applied with the cl i ent Nunber Val i dat or
component:

<sf:clientTextValidator required="true" regExp="[0-9]{16}"
inval i dMessage="A 16-digit credit card nunber is required.">
<h:input Text id="creditCard" val ue="#{booking.creditCard}" required="true"/>
</ sf:clientTextValidator>

Thiswill apply client-side validation to the child i nput Text component, giving the user a
clear indicator if the field isleft blank, is not numeric, or does not match the given regular
expression.

80 JSF Integration

JSF Integration 81

Validating a Date Field

Simple client-side date validation with arich calendar popup can be applied with the
cl i ent Dat eVal i dat or component:

<sf:clientDateValidator required="true" >
<h:input Text id="checkinDate" val ue="#{booki ng.checki nDate}" required="true">
<f:convertDateTi nme pattern="yyyy- MV dd" tinmeZone="EST"/>
</ h: i nput Text >
</sf:clientDateValidator>

Thiswill apply client-side validation to the child i nput Text component, giving the user a
clear indicator if thefield isleft blank or is not avalid date.

Preventing an Invalid Form Submission

Theval i dat eAl | Ond i ck component can be used to intercept the "onclick” event of a child
component and suppress the event if all client-side validations do not pass.

<sf:validateA | OnClick>
<sf:commandButton id="proceed" action="proceed" processlds="*" val ue="Proceed"/ >
</ sf:validateA | OnCick>

Thiswill prevent the form from being submitted when the user clicks the "proceed” button if the
form isinvalid. When the validations are executed, the user is given clear and immediate
indicators of the problems that need to be corrected.

12.9. Third-Party Component Library Integration

Spring Faces strives to be compatible with any third-party JSF component library. By honoring
all of the standard semantics of the JSF specification within the SWF-driven JSF lifecycle,
third-party librariesin general should "just work". The main thing to remember is that
configuration in web.xml will change slightly since Spring Faces requests are not routed through
the standard FacesServlet. Typicaly, anything that is traditionally mapped to the FacesServlet
should be mapped to the Spring DispatcherServlet instead. (Y ou can also map to both if for
example you are migrating alegacy JSF application page-by-page.) In some cases, a deeper level
of integration can be achieved by configuring special flow services that are "aware" of a
particular component library, and these will be noted in the examples to follow.

Rich Faces Integration

To use the Rich Faces component library with Spring Faces, the following filter configuration is
needed in web.xml (in addition to the typical Spring Faces configuration):

<filter>
<di spl ay- nanme>Ri chFaces Filter</display-nanme>

Version 2.0.9 81

82 Spring Web Flow

<filter-nanme>richfaces</filter-nane>
<filter-class>org.ajax4jsf.Filter</filter-class>
</filter>

<filter-mappi ng>
<filter-nanme>richfaces</filter-nanme>
<servl et-nanme>Spring Web MVC Di spat cher Servl et </servlet-nane>
<di spat cher >REQUEST</ di spat cher >
<di spat cher >FORWARD</ di spat cher >
<di spat cher >l NCLUDE</ di spat cher >
</filter-mappi ng>

For deeper integration (including the ability to have a view with combined use of the Spring
Faces Ajax components and Rich Faces Ajax components), configure the RichFacesAjaxHandler
on your FlowController:

<bean id="flowController" class="org.springfranmework.webfl ow. mvc. servl et. Fl onController">
<property name="fl owExecutor" ref="fl owExecutor" />
<property nanme="aj axHandl er">
<bean cl ass="org. springframework. faces. richfaces. R chFacesAj axHandl er"/ >
</ property>
</ bean>

RichFaces Ajax components can be used in conjunction with ther ender tag to render partial
fragments on an Ajax request. Instead of embedding the ids of the components to be re-rendered
directly in the view template (as you traditionally do with Rich Faces), you can bind the

r eRender attribute of a RichFaces Ajax component to aspecial f | owRender Fr agnent s
EL variable. For example, in your view template you can have a fragment that you would
potentially like to re-render in response to a particular event:

<h:formid="hotel s">
<adj : out put Panel id="searchResul t sFragnent">
<h: out put Text id="noHotel sText" value="No Hotels Found" rendered="#{hotels.rowCount == 0}"/>
<h: dataTabl e i d="hotel s" styl eC ass="summary" val ue="#{hotel s}" var="hotel" rendered="#{hotels.rowCount > 0}">
<h: col um>
<f:facet nanme="header">Nane</f:facet>
#{ hot el . nane}
</ h: col um>
<h: col um>
<f:facet name="header">Address</f:facet>
#{ hot el . addr ess}
</ h: col um>
</ h: dat aTabl e>
</ a4j : out put Panel >
</ h: forne»

then a RichFaces Ajax commandLi nk to fire the event:

<a4j : commandLi nk id="nextPagelLi nk" val ue="Mre Results" action="next" reRender="#{fl owRender Fragnents}" />

and then in your flow definitionat r ansi t i on to handle the event:

<transition on="next">
<eval uat e expression="searchCriteria.nextPage()" />
<render fragnments="hotels: searchResul t sFragnent" />
</transition>

Apache MyFaces Trinidad Integration

82 JSF Integration

JSF Integration

The Apache MyFaces Trinidad library has been tested with the Spring Faces integration and
proven to fit in nicely. Deeper integration to allow the Trinidad components and Spring Faces
components to play well together has not yet been attempted, but Trinidad provides a pretty
thorough solution on its own when used in conjunction with the Spring Faces integration layer.

NOTE - An Aj axHand!| er implementation for Trinidad is not currently provided

83

out-of-the-box with Spring Faces. In order to fully integrate with Trinidad's PPR functionality, a

custom implementation should be provided. An community-provided partial example can be

found here: SWF-1160

Typical Trinidad + Spring Faces configuration is as follows in web.xml (in addition to the

typical Spring Faces configuration):

<cont ext - par an®>
<par am nane>j avax. f aces. STATE_SAVI NG_METHOD</ par am nane>
<param val ue>server </ param val ue>

</ cont ext - par an>

<cont ext - par an®
<par am nane>
or g. apache. nyf aces. tri ni dad. CHANGE_PERSI STENCE
</ par am nanme>
<param val ue>sessi on</ param val ue>
</ cont ext - par an>

<cont ext - par an®
<par am name>
or g. apache. nyf aces. tri ni dad. ENABLE_QUI RKS_MODE
</ par am nane>
<par am val ue>f al se</ param val ue>
</ cont ext - par an>

<filter>
<filter-name>Trinidad Filter</filter-nane>
<filter-class>
org. apache. nyfaces. trini dad. webapp. Tri ni dadFi | ter
</filter-class>
</filter>

<filter-mappi ng>

<filter-name>Trinidad Filter</filter-nanme>

<servl et-name>Spring WC Di spat cher Servlet</servlet-nanme>
</filter-mappi ng>

<servl et >
<servl et-nanme>Trini dad Resource Servlet</servlet-nane>
<servl et-cl ass>
org. apache. nyfaces. trini dad. webapp. Resour ceSer vl et
</servlet-class>
</ servl et>

<servl et - mappi ng>
<servl et - name>r esour ces</ ser vl et - name>
<url -pattern>/adf/*</url-pattern>

</ servl et - mappi ng>

Version 2.0.9

83

http://jira.springsource.org/browse/SWF-1160

Spring Web Flow

JSF Integration

Portlet Integration 85

13. Portlet Integration

13.1. Introduction

This chapter shows how to use Web Flow in a Portlet environment. Web Flow has full support
for JSR-168 portlets. The booki ng- port | et - mvc sample application is agood reference for
using Web Flow within a portlet. This application isasimplified travel site that allows usersto
search for and book hotel rooms.

13.2. Configuring web.xml and portlet.xml

The configuration for a portlet depends on the portlet container used. The sample applications,
included with Web Flow, are both configured to use Apache Pluto, the JSR-168 reference
implementation.

In general, the configuration requires adding a servlet mapping in theweb. xm file to dispatch
request to the portlet container.

<servl et >
<servl et - nane>sw - booki ng- mvc</ servl et - nane>
<servl et-cl ass>org. apache. pl uto. core. Port| et Servl et</servl et-class>
<init-paranr
<param name>port| et - name</ par am nane>
<par am val ue>sw - booki ng- mvc</ param val ue>
</init-paran>
<l oad- on- st art up>1</1| oad- on- st art up>
</ servlet>

<servl et - mappi ng>

<ser vl et - name>swf - booki ng- nvc</ ser vl et - name>

<url -pattern>/Plutol nvoker/sw - booki ng-mvc</url -pattern>
</ servl et - mappi ng>

Theportl et.xm configuration isastandard portlet configuration. Theport| et - cl ass
needs to be set along with apair of i ni t - par ans. Setting theexpi rati on-cachetoOis
recommended to force Web Flow to always render a fresh view.

<portlet>

<portlet-class>org.springframework.web. portlet.D spatcherPortlet</portlet-class>
<init-paranr
<nane>cont ext Confi gLocati on</ nane>
<val ue>/ \EEB- | NF/ web- appl i cati on-confi g. xm </ val ue>
</init-param
<i ni t-paranp
<name>vi ewRender er Ur | </ nane>
<val ue>/ WEB- | NF/ ser vl et/ vi ew</ val ue>
</init-paran>
<expi rati on- cache>0</ expirati on-cache>

</ po;'i I et>

13.3. Configuring Spring

Version 2.0.9 85

http://portals.apache.org/pluto/

86 Spring Web Flow

Flow Handlers

The only supported mechanism for bridging a portlet request to Web Flow isaFl owHandl er .
ThePort | et Fl owCont rol | er usedin Web Flow 1.0 isno longer supported.

The flow handler, similar to the servlet flow handler, provides hooks that can:

sdlect the flow to execute

pass input parameters to the flow on initialization

handle the flow execution outcome

handle exceptions

The Abst r act FI owHandl| er classisan implementation of FIl owHandl er that provides
default implementations for these hooks.

In a portlet environment the targeted flow id can not be inferred from the URL and must be
defined explicitly in the handler.

public class ViewFl owHandl er extends Abstract Fl owHandl er {
public String getFlowd() {
return "view';

Handler Mappings

Spring Portlet MV C provides arich set of methods to map portlet requests. Complete
documentation is available in the Spring Reference Documentation.

Thebooki ng- port| et - mvc sample application usesaPor t | et ModeHandl er Mappi ng
to map portlet requests. The sample application only supports vi ew mode, but support for other
portlet modes is available. Other modes can be added and point to the same flow asvi ew mode,
or any other flow.

<bean id="portl| et ModeHandl er Mappi ng"
cl ass="org. springfranmewor k. web. portlet.handl er. Portl| et ModeHandl er Mappi ng" >
<property name="port| et ModeMap" >
<map>
<entry key="view'>
<bean cl ass="org. spri ngfranmewor k. webf | ow. sanpl es. booki ng. Vi ewrl owHandl er" />
</entry>
</ map>
</ property>
</ bean>

Flow Handler Adapter

86 Portlet Integration

http://static.springframework.org/spring/docs/2.5.x/reference/portlet.html#portlet-handlermapping

Portlet Integration 87

A Fl owHandl| er Adapt er converts the handler mappings to the flow handlers. The flow
executor is required as a constructor argument.

<bean id="fl owHandl er Adapt er"
cl ass="org. springfranmewor k. webf | ow. mvc. portl et. Fl onHandl er Adapt er " >
<constructor-arg ref="fl owExecutor" />
</ bean>

13.4. Portlet Views

In order to facilitate view rendering, a Vi ewRender er Ser vl et must be added to the
web. xm file. Thisservlet is not invoked directly, but it used by Web Flow to render viewsin a
portlet environment.

<servl et>
<servl et - nane>Vi ewRender er Ser vl et </ ser vl et - nane>
<servl et -class>org. spri ngframewor k. web. servl et. Vi ewRender er Servl et </ servl et -cl ass>
</servlet>
<servl et - mappi ng>
<servl et - nanme>Vi ewRender er Ser vl et </ ser vl et - nane>
<url-pattern>/ WEB-| NF/ servl et/view/url-pattern>
</ servl et - mappi ng>

13.5. Portlet Modes and Window States

Window State

The Portlet API defined three window states: normal, minimized and maximized. The portlet
implementation must decide what to render for each of these window states. Web Flow exposes
the string value of the window state under por t | et W ndowsSt at e viathe request map on the
external context.

request Cont ext . get Ext er nal Cont ext (). get Request Map(). get ("portlet WndowState");

ext er nal Cont ext. request Map. port| et WndowSt at e

Portlet Mode

The Portlet API defined three portlet modes: view, edit and help. The portlet implementation
must decide what to render for each of these modes. Web Flow exposes the string value of the
portlet mode under por t | et Mode viathe request map on the external context.

request Cont ext . get Ext er nal Cont ext (). get Request Map(). get ("portl et Mde");

Version 2.0.9 87

88 Spring Web Flow

ext er nal Cont ext . request Map. port| et Mode

13.6. Issues in a Portlet Environment

Redirects

The Portlet API only allows redirects to be requested from an action request. Because views are
rendered on the render request, views and vi ew st at es cannot trigger aredirect.

Theext er nal Redi r ect : view prefix isaconvenience for Servlet based flows. An
Il | egal St at eExcepti on isthrownif aredirect isrequested from arender request.

end- st at e redirects can be achieved by implementing
Fl owHandl er . handl eExecut i onQut cone. This callback provides the
Act i onResponse object which supports redirects.

Switching Portlet Modes

The portlet container passes the execution key from the previous flow when switching to a new
mode. Even if the mode is mapped to adifferent FI owHandl er the flow execution will resume
the previous execution. Y ou may switch the mode programatically in your FlowHandler after
ending aflow in an ActionRequest.

One way to start anew flow isto create a URL targeting the mode without the execution key.

Portlets and JSF

Web Flow supports JSF as the view technology for a portlet. However, ajsf-portlet bridge
(JSR-301) must be provided. At the time of thiswriting, no feature complete jsf-portlet bridge
exists. Some of the existing bridge implementations may appear to work, however, side effect
may occur.

JSF portlets are considered experimental at thistime.

88 Portlet Integration

Testing flows 89

14. Testing flows

14.1. Introduction

This chapter shows you how to test flows.

14.2. Extending AbstractXmlIFlowExecutionTests

To test the execution of a XML-based flow definition, extend
Abst ract Xm Fl owExecuti onTest s:

public class Booki ngFl owExecuti onTests extends Abstract Xm Fl owExecutionTests {

}

14.3. Specifying the path to the flow to test

At aminimum, you must override
get Resour ce(Fl owDef i ni ti onResour ceFact ory) to return the path to the flow you

wish to test:

@verride
protected Fl owDefinitionResource get Resource(Fl owDefi nitionResourceFactory resourceFactory) {

return resourceFactory. createFi | eResource("src/ mai n/ webapp/ VEEB- | NF/ hot el s/ booki ng/ booki ng. xm ") ;

14.4. Registering flow dependencies

If your flow has dependencies on externally managed services, also override
confi gur eFl owBui | der Cont ext (MockFl owBui | der Cont ext) to register stubs or

mocks of those services:

@verride
protected voi d configureFl owBui | der Cont ext (MockFl owBui | der Cont ext bui | der Cont ext) {

bui | der Cont ext . r egi st er Bean("booki ngServi ce", new StubBooki ngService());

}

If your flow extends from another flow, or has states that extend other states, also override
get Model Resour ces(Fl owDefi ni ti onResour ceFact ory) to return the path to the

parent flows.

@verride
protected FlowDefinitionResource[] getMdel Resources(Fl owDefinitionResourceFactory resourceFactory) {

Version 2.0.9 89

90 Spring Web Flow

return new Fl owDefinitionResource[] {
resour ceFactory. creat eFi | eResour ce("src/ mai n/ webapp/ VEB- | NF/ conmon/ conmon. xm ")

14.5. Testing flow startup

Have your first test exercise the startup of your flow:

public void testStartBooki ngFl owm) {
Booki ng booki ng = creat eTest Booki ng() ;
Mut abl eAt tri but eMap i nput = new Local AttributeMap();
input.put("hotelld", "1"
MbckExt er nal Cont ext context = new MbckExt er nal Cont ext 0);
cont ext. set Current User ("kei t h);
start Fl ow(i nput, context);

assert Current St at eEqual s("ent er Booki ngDet ail s! "),
assert True(get Requi redFl owAt t ri but e("booki ng") instanceof Booking);

Assertions generally verify the flow isin the correct state you expect.

14.6. Testing flow event handling

Define additional tests to exercise flow event handling behavior. Y ou goa should be to exercise
all paths through the flow. Y ou can use the convenient set Current St at e(Stri ng)
method to jump to the flow state where you wish to begin your test.

public void testEnterBookingDetails_Proceed() {
set Current St at e(" ent er Booki ngDet ai | s");
get Fl owScope() . put (" booki ng", createTestBooking());
MbockExt er nal Cont ext context = new MbckExt er nal Cont ext () ;
cont ext. set Event | d("proceed");
resunmeFl ow(cont ext);

assert Current St at eEqual s("revi ewBooki ng");

14.7. Mocking a subflow

To test calling a subflow, register amock implementation of the subflow that asserts input was
passed in correctly and returns the correct outcome for your test scenario.

public void testBookHotel () {
setCurrent State("revi ewHotel ");
Hotel hotel = new Hotel ();
hot el . set | d(1L)

hot el . set Narme(" Janmeson I nn*);
get Fl owScope(). put ("hotel ", hotel)

90 Testing flows

Testing flows

}
public Flow creat eMockBooki ngSubflow() {
FI ow nockBooki ngFl ow = new FI ow(" booki ng");
nockBooki ngFl ow. set | nput Mapper (new Mapper () {
public Mappi ngResults map(Obj ect source, Object target) {
/] assert that 1L was passed in as input
assert Equal s(1L, ((AttributeMap) source).get("hotelld"));
return null;
/1 imrediately return the booki ngConfirmed outcome so the caller can respond
new EndSt at e(nockBooki ngFl ow, "booki ngConfirnmed");
return nockBooki ngFl ow;
}
Version 2.0.9

get Fl owDef i niti onRegi stry().registerFl owDefinition(createMckBooki ngSubflow());

MbckExt er nal Cont ext context = new MbckExt er nal Cont ext () ;
context. set Event | d("book");
resunmeFl ow(cont ext);

/1 verify flow ends on ' booki ngConfirnmed
assert Fl owExecut i onEnded();
assert Fl owExecut i onQut coneEqual s("fini sh");

91

91

92

92

Spring Web Flow

Testing flows

Upgrading from 1.0 93

15. Upgrading from 1.0

15.1. Introduction

This chapter shows you how to upgrade existing Web Flow 1 application to Web Flow 2.

15.2. Flow Definition Language

The core concepts behind the flow definition language have not changed between Web Flow 1
and 2. However, some of the element and attribute names have changed. These changes allow for
the language to be both more concise and expressive. A complete list of mapping changesis
available as an appendix.

Flow Definition Updater Tool

An automated tool is available to aid in the conversion of existing 1.x flows to the new 2.x style.
Thetool will convert all the old tag names to their new equivalents, if needed. While the tool will
make a best effort attempt at conversion, there is not a one-to-one mapping for all version 1
concepts. If the tool was unable to convert a portion of the flow, it will be marked with a

WARNI NG comment in the resulting flow.

The conversion tool requires spring-webflow.jar, spring-core.jar and an XSLT 1.0 engine. Saxon
6.5.5 is recommended.

Thetool can be run from the command line with the following command. Required libraries

must be available on the classpath. The source must be a single flow to convert. The resulting
converted flow will be sent to standard outpui.

java org. springfranmewor k. webf | ow. upgr ade. WebFI owUpgr ader fl owt o- upgr ade. xm

Flow Definition Updater Tool Warnings

argument parameter-type no longer supported
Bean actions have been deprecated in favor of EL based evaluate expressions. The EL
expression is able to accept method parameters directly, so there is no longer a need for the

argument tag. A side effect of this change is that method arguments must be of the correct type
before invoking the action.

inline-flow is no longer supported

Inline flows are no longer supported. The contents of the inline flow must be moved into a new

Version 2.0.9 93

http://saxon.sourceforge.net/
http://saxon.sourceforge.net/

94 Spring Web Flow

top-level flow. The inline flow's content has been converted for your convenience.
mapping target-collection is no longer supported

Output mappings can no longer add an item to a collection. Only assignment is supported.
var bean is no longer supported

The var bean attribute is no longer needed. All spring beans can be resolved viaEL.

var scope is no longer supported

The var element will place al variable into flow scope. Conversation scope was previously
allowed.

EL Expressions

EL expressions are used heavily throughout the flow definition language. Many of the attributes
that appear to be plain text are actually interpreted as EL. The standard EL delimiters (either ${}
or #{}) are not necessary and will often cause an exception if they are included.

EL delimiters should be removed where necessary by the updater tool.

15.3. Web Flow Configuration

In Web Flow 1 there were two options available for configuring Web Flow, one using standard
spring bean XML and the other using thewebf | ow conf i g- 1. 0 schema. The schema
configuration option simplifies the configuration process by keeping long internal class names
hidden and enabling contextual auto-complete. The schema configuration option is the only way
to configure Web Flow 2.

Web Flow Bean Configuration

The Fact or yBean bean XML configuration method used in Web Flow 1 is no longer
supported. The schema configuration method should be used instead. In particular beans defining
Fl owExecut or Fact or yBean and Xm Fl owRegi st r yFact or yBean should be
updated. Continue reading Web Flow Schema Configuration for details.

Web Flow Schema Configuration

Thewebf | ow conf i g configuration schema has also changed dlightly from version 1 to 2.
The ssimplest way to update your application is modify the version of the schemato 2.0 then fix
any errorsin aschemaaware XML editor. The most common change is add 'flow-' to the

94 Upgrading from 1.0

Upgrading from 1.0 95

beginning of the elements defined by the schema

<beans xm ns="http://wwm. springfranmewor k. or g/ schema/ beans"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xm ns: webf | ow="ht t p: / / ww. spri ngf ramewor k. or g/ schema/ webf | ow- confi g"
xsi : schemalLocati on="
http://ww. springfranework. or g/ schema/ beans
http://ww. springfranmewor k. or g/ schema/ beans/ spri ng- beans- 2. 5. xsd
http://ww. springfranmework. or g/ schema/ webf | ow confi g
http://ww. springfranewor k. or g/ schema/ webf | ow- confi g/ spri ng- webf | ow confi g-2. 0. xsd">

flow-executor

The flow executor isthe core Web Flow configuration element. This element replaces previous
Fl owExecut or Fact or yBean bean definitions.

<webf | ow f| ow executor id="fl owExecutor" />

flow-execution-listeners

Flow execution listeners are also defined in the flow executor. Listeners are defined using
standard bean definitions and added by reference.

<webf | ow f| ow executor id="flowExecutor" flowregistry="flowRegistry">
<webf | ow. f| ow execution-1isteners>
<webfl ow | istener ref="securityFl owExecutionListener"/>
</ webf | ow f| ow execution-1isteners>
</ webf | ow f| ow execut or >

<bean id="securityFl owExecuti onLi stener"
cl ass="org. springfranmewor k. webf | ow. security. SecurityFl owExecutionLi stener" />

flow-registry

Thefl owregi stry containsaset of f | ow | ocat i ons. Every flow definition used by
Web Flow must be added to the registry. This element replaces previous
Xm FlI owRegi st ryFact or yBean bean definitions.

<webflow flowregistry id="fl owRegi stry">
<webf | ow: f| ow | ocati on path="/WEB-| NF/ hot el s/ booki ng/ booki ng. xm " />
</ webf | ow fl owregistry>

Flow Controller

The package name for flow controllers has changed from

or g. spri ngframewor k. webf | ow. execut or. mvc. Fl onControl | er andisnow
or g. spri ngf ramewor k. webf | ow. mvc. servl et. Fl owCont rol | er for Servlet
MV C requests. The portlet flow controller

or g. spri ngframewor k. webf | ow. execut or. mvc. Portl et Fl onControl | er has
been replaced by aflow handler adapter available at

or g. spri ngframewor k. webf | ow. mvc. portl et. Fl owHandl er Adapt er . They

Version 2.0.9 95

96 Spring Web Flow

will need to be updated in the bean definitions.

Flow URL Handler

The default URL handler has changed in Web Flow 2. The flow identifier is now derived from
the URL rather then passed explicitly. In order to maintain comparability with existing views and
URL structuresaWebFl owlFl owUr | Handl er isavailable.

<bean nane="/pos. ht i’ cl ass="org. spri ngfranmewor k. webf| ow. mvc. servl et. Fl owControl |l er">
<property name="fl| owExecutor" ref="fl owExecutor" />
<property name="fl owJr| Handl er">
<bean cl ass="org. spri ngfranmewor k. webf | ow. cont ext. servl et. WebFl owlFl owUr | Handl er" />
</ property>
</ bean>

View Resolution

Web Flow 2 by default will both select and render views. View were previously selected by Web
Flow 1 and then rendered by an external view resolver.

In order for version 1 flowsto work in Web Flow 2 the default view resolver must be overridden.
A common use case isto use Apache Tiles for view resolution. The following configuration will
replace the default view resolver with a Tilesview resolver. Thet i | esVi ewResol ver inthis
example can be replaced with any other view resolver.

<webfl ow flowregistry id="fl ovvRegl stry f1 ow bui | der-servi ces="fl| owBui | der Servi ces">
<web: f | ow-| ocati on pat h=" />

</vvebf|owf|owreg| stry>

<webf | ow fl ow bui | der-services id="fl owBuil der Servi ces"
vi ewfactory-creator="viewFactoryCreator"/>

<bean id="vi ewFactoryCreator" class="org.springframework. webfl ow. mvc. bui | der. MicVi ewFact or yCr eat or " >
<property name="vi ewResol vers" ref="til esVi ewResol ver" />

</ bean>

<bean id="tilesVi evvResoI ver" cI ass="org. springfranmewor k. web. servl et. vi ew. Ur | BasedVi ewResol ver ">
<property nanme="vi ewCl ass" val ue="org. springfranmework. web. servliet.viewtiles.TilesJstlView' />

</ bean>

<bean cl ass="org. springfranmework. web. servliet.viewtiles. TilesConfigurer">

<property nanme="definitions" value="/WEB-INF/tiles-def.xm" />
</ bean>

15.4. New Web Flow Concepts

Automatic Model Binding

Web Flow 1 required Spring MV C based flows to manually call For mAct i on methods,
notably: set upFor m bi ndAndVal i dat e to process form views. Web Flow 2 now provides
automatic model setup and binding using the nodel attribute for vi ew- st at es. Please see the
Binding to aModel section for details.

96 Upgrading from 1.0

http://tiles.apache.org/

Upgrading from 1.0 97

OGNL vs EL

Web Flow 1 used OGNL exclusively for expressions within the flow definitions. Web Flow 2
adds support for Unified EL. United EL isused when it is available, OGNL will continue to be
used when a Unified EL implementation is not available. Please see the Expression L anguage
chapter for details.

Flash Scope
Flash scopein Web Flow 1 lived across the current request and into the next request. Thiswas
conceptually similar to Web Flow 2's view scope concept, but the semantics were not as well

defined. In Web Flow 2, flash scopeis cleared after every view render. This makes flashScope
semantics in Web Flow consistent with other web frameworks.

Spring Faces

Web Flow 2 offers significantly improved integration with JavaServerFaces. Please see the JSF
Integration chapter for details.

External Redirects

External redirectsin Web Flow 1 were always considered context relative. In Web Flow 2, if the
redirect URL beginswith adlash, it is considered servlet-relative instead of context-relative.
URLswithout aleading slash are still context relative.

Version 2.0.9 97

98

98

Spring Web Flow

Upgrading from 1.0

Appendix A. Flow Definition Language

1.0 to 2.0 Mappings

The flow definition language has changed since the 1.0 release. Thisis alisting of the language
elementsin the 1.0 release, and how they map to elementsin the 2.0 release. While most of the
changes are semantic, there are afew structural changes. Please see the upgrade guide for more
details about changes between Web Flow 1.0 and 2.0.

Table A.1. Mappings

SWF 1.0 SWF 2.0 Comments
action * use <evaluate />
bean *
name *
method *
action-state action-state
id id
* parent
argument * use <evaluate expression="func(argl, arg2,
L)>
expression
parameter-type
attribute attribute
name name
type type
value value

attribute-mapper

input and output elements can be in flows
or subflows directly

bean * now subflow-attribute-mapper attribute on
subflow-state
bean-action * use <evauate />
bean *
name *

method

SWF 1.0 SWF 2.0 Comments
decision-state decision-state
id id
* parent
end-actions on-end
end-state end-state
id id
view view
* parent
* commit
entry-actions on-entry
evaluate-action evaluate
expression expression
name * use <evaluate ...> <attribute name="name’
value="..." /> </evaluate>
* result
* result-type

evaluation-result
name
scope

exception-handler

*

*

exception-handler

use <evauate result="..." />

bean bean
exit-actions on-exit
flow flow
* Start-state
* parent
* abstract

global-transitions
if
test

global-transitions
if
test

then

then

SWF 1.0
else
import
resource
inline-flow
id
input-attribute
name

scope

required

*

*

input-mapper

mapping
source

target

SWF 2.0
else
bean-import

resource

input

name

required

type
value

input or output

name or value

name or value

Comments

convert to new top-level flow

prefix name with scope <input
name="flowScope.foo" />

inputs can be in flows and subflows
directly

name when in flow element, value when in
subflow-state element

value when in flow element, name when in
subflow-state element

target-collection

no longer supported

from * detected automatically
to type
required required
method-argument * use <evaluate expression="func(argl, arg2,
L)
method-result * use <evaluate result="..." />
name *
scope *
output-attribute output
name name
scope * prefix name with scope <output

name="flowScope.foo" />

SWF 1.0 SWF 2.0 Comments
required required
* type
* value
output-mapper * output can bein flows and subflows
directly
render-actions on-render
set set
attribute name
scope * prefix name with scope <set
name="flowScope.foo" />
value value
name * use <set ...> <attribute name="name"
value="..." /> </set>
* type
start-actions on-start
start-state * now <flow start-state="...">, or defaults to
thefirst state in the flow
idref *
subflow-state subflow-state
id id
flow subflow
* parent
* subflow-attribute-mapper
transition transition
on on
on-exception on-exception
to to
* bind
value value
var var
name name

SWF 1.0 SWF 2.0 Comments

class class
scope * always flow scope
bean * all Spring beans can be resolved with EL
view-state view-state
id id
view view
* parent
* redirect
* popup
* model
* history
* per sistence-context
* render
* fragments
* secured
* attributes

* match

	Spring Web Flow Reference Guide
	Table of Contents
	Preface
	1. Introduction
	1.1. What this guide covers
	1.2. What Web Flow requires to run
	1.3. Where to get support
	1.4. Where to follow development
	1.5. How to access Web Flow artifacts from Maven Central
	1.6. How to access Web Flow artifacts from the SpringSource Bundle Repository
	Accessing Web Flow bundles with Maven
	Accessing Web Flow bundles with Ivy
	Accessing the dm Server Web Flow library

	1.7. How to access nightly builds
	Accessing snapshots from the Maven-central compatible repository
	Accessing snapshots from the SpringSource Enterprise Bundle Repository
	Accessing snapshot distribution archives

	2. Defining Flows
	2.1. Introduction
	2.2. What is a flow?
	2.3. What is the makeup of a typical flow?
	2.4. How are flows authored?
	2.5. Essential language elements
	flow
	view-state
	transition
	end-state
	Checkpoint: Essential language elements

	2.6. Actions
	evaluate
	Assigning an evaluate result
	Converting an evaluate result

	Checkpoint: flow actions

	2.7. Input/Output Mapping
	input
	Declaring an input type
	Assigning an input value
	Marking an input as required

	output
	Specifying the source of an output value

	Checkpoint: input/output mapping

	2.8. Variables
	var

	2.9. Calling subflows
	subflow-state
	Passing a subflow input
	Mapping subflow output

	Checkpoint: calling subflows

	3. Expression Language (EL)
	3.1. Introduction
	3.2. Supported EL implementations
	Unified EL
	OGNL

	3.3. EL portability
	3.4. EL usage
	Expression types
	Standard eval expressions
	Template expressions

	3.5. Special EL variables
	flowScope
	viewScope
	requestScope
	flashScope
	conversationScope
	requestParameters
	currentEvent
	currentUser
	messageContext
	resourceBundle
	flowRequestContext
	flowExecutionContext
	flowExecutionUrl
	externalContext

	3.6. Scope searching algorithm

	4. Rendering views
	4.1. Introduction
	4.2. Defining view states
	4.3. Specifying view identifiers
	Flow relative view ids
	Absolute view ids
	Logical view ids

	4.4. View scope
	Allocating view variables
	Assigning a viewScope variable
	Manipulating objects in view scope

	4.5. Executing render actions
	4.6. Binding to a model
	4.7. Performing type conversion
	Implementing a Converter
	Registering a Converter

	4.8. Suppressing binding
	4.9. Specifying bindings explicitly
	4.10. Validating a model
	Programmatic validation
	Implementing a model validate method
	Implementing a Validator

	ValidationContext

	4.11. Suppressing validation
	4.12. Executing view transitions
	Transition actions
	Global transitions
	Event handlers
	Rendering fragments

	4.13. Working with messages
	Adding plain text messages
	Adding internationalized messages
	Using message bundles
	Understanding system generated messages

	4.14. Displaying popups
	4.15. View backtracking
	Discarding history
	Invalidating history

	5. Executing actions
	5.1. Introduction
	5.2. Defining action states
	5.3. Defining decision states
	5.4. Action outcome event mappings
	5.5. Action implementations
	Invoking a POJO action
	Invoking a custom Action implementation
	Invoking a MultiAction implementation

	5.6. Action exceptions
	Handling a business exception with a POJO action
	Handling a business exception with a MultiAction

	5.7. Other Action execution examples
	on-start
	on-entry
	on-exit
	on-end
	on-render
	on-transition
	Named actions
	Streaming actions
	Handling File Uploads

	6. Flow Managed Persistence
	6.1. Introduction
	6.2. FlowScoped PersistenceContext

	7. Securing Flows
	7.1. Introduction
	7.2. How do I secure a flow?
	7.3. The secured element
	Security attributes
	Matching type

	7.4. The SecurityFlowExecutionListener
	Custom Access Decision Managers

	7.5. Configuring Spring Security
	Spring configuration
	web.xml Configuration

	8. Flow Inheritance
	8.1. Introduction
	8.2. Is flow inheritance like Java inheritance?
	8.3. Types of Flow Inheritance
	Flow level inheritance
	State level inheritance

	8.4. Abstract flows
	8.5. Inheritance Algorithm
	Mergeable Elements
	Non-mergeable Elements

	9. System Setup
	9.1. Introduction
	9.2. webflow-config.xsd
	9.3. Basic system configuration
	FlowRegistry
	FlowExecutor

	9.4. flow-registry options
	Specifying flow locations
	Assigning custom flow identifiers
	Assigning flow meta-attributes
	Registering flows using a location pattern
	Flow location base path
	Configuring FlowRegistry hierarchies
	Configuring custom FlowBuilder services
	conversion-service
	expression-parser
	view-factory-creator
	development

	9.5. flow-executor options
	Attaching flow execution listeners
	Tuning FlowExecution persistence
	max-executions
	max-execution-snapshots

	10. Spring MVC Integration
	10.1. Introduction
	10.2. Configuring web.xml
	10.3. Dispatching to flows
	Registering the FlowHandlerAdapter
	Defining flow mappings
	Flow handling workflow

	10.4. Implementing custom FlowHandlers
	Example FlowHandler
	Deploying a custom FlowHandler
	FlowHandler Redirects

	10.5. View Resolution
	10.6. Signaling an event from a View
	Using a named HTML button to signal an event
	Using a hidden HTML form parameter to signal an event
	Using a HTML link to signal an event

	11. Spring JavaScript Quick Reference
	11.1. Introduction
	11.2. Serving Javascript Resources
	11.3. Including Spring Javascript in a Page
	11.4. Spring Javascript Decorations
	11.5. Handling Ajax Requests
	Providing a Library-Specific AjaxHandler
	Handling Ajax Requests with Spring MVC Controllers
	Handling Ajax Requests with Spring MVC + Spring Web Flow

	12. JSF Integration
	12.1. Introduction
	12.2. Spring-centric Integration Approach
	12.3. Configuring web.xml
	12.4. Configuring Web Flow to render JSF views
	12.5. Configuring faces-config.xml
	12.6. Replacing the JSF Managed Bean Facility
	Using Flow Variables
	Using Scoped Spring Beans
	Manipulating The Model

	12.7. Handling JSF Events With Spring Web Flow
	Handling JSF In-page Action Events
	Handling JSF Action Events
	Performing Model Validation
	Handling Ajax Events

	12.8. Enhancing The User Experience With Rich Web Forms
	Validating a Text Field
	Validating a Numeric Field
	Validating a Date Field
	Preventing an Invalid Form Submission

	12.9. Third-Party Component Library Integration
	Rich Faces Integration
	Apache MyFaces Trinidad Integration

	13. Portlet Integration
	13.1. Introduction
	13.2. Configuring web.xml and portlet.xml
	13.3. Configuring Spring
	Flow Handlers
	Handler Mappings
	Flow Handler Adapter

	13.4. Portlet Views
	13.5. Portlet Modes and Window States
	Window State
	Portlet Mode

	13.6. Issues in a Portlet Environment
	Redirects
	Switching Portlet Modes
	Portlets and JSF

	14. Testing flows
	14.1. Introduction
	14.2. Extending AbstractXmlFlowExecutionTests
	14.3. Specifying the path to the flow to test
	14.4. Registering flow dependencies
	14.5. Testing flow startup
	14.6. Testing flow event handling
	14.7. Mocking a subflow

	15. Upgrading from 1.0
	15.1. Introduction
	15.2. Flow Definition Language
	Flow Definition Updater Tool
	Flow Definition Updater Tool Warnings
	argument parameter-type no longer supported
	inline-flow is no longer supported
	mapping target-collection is no longer supported
	var bean is no longer supported
	var scope is no longer supported

	EL Expressions

	15.3. Web Flow Configuration
	Web Flow Bean Configuration
	Web Flow Schema Configuration
	flow-executor
	flow-execution-listeners
	flow-registry

	Flow Controller
	Flow URL Handler
	View Resolution

	15.4. New Web Flow Concepts
	Automatic Model Binding
	OGNL vs EL
	Flash Scope
	Spring Faces
	External Redirects

	Appendix A. Flow Definition Language 1.0 to 2.0 Mappings

