
headache

Vincent Simonet

November, 2002

1 Overview

It is a common usage to put at the beginning of source code files a short header giving, for instance, some
copyright informations. headache is a simple and lightweight tool for managing easily these headers.
Among its functionalities, one may mention:

• Headers must generally be generated as comments in source code files. headache deals with different
file types and generates for each of them headers in an appropriate format.

• headache automatically detects existing headers and removes them. Thus, you can use it to update
headers in a set of files.

headache is distributed under the terms of the GNU Library General Public License. See file LICENSE
of the distribution for more information.

2 Compilation and installation

Building headache requires Objective Caml (version 3.06 or up, available at http://caml.inria.fr/)
and GNU Make. In addition, from version 1.03-utf8, the build requires the Unicode library Camomile
and, from version 1.04, Dune.

Instructions

make && sudo make INSTALLDIR=/usr/local/bin install

Build the executable and install it into the specified directory.
headache is available through OPAM (available at http://opam.ocaml.org/), the OCaml Package

Manager. This is the preferred installation method. Be sure to install opam v1.2 or higher. Then the
following sequence of commands should install the package:

opam init

opam install depext

opam depext headache

opam install headache

3 Usage

Let us illustrate the use of this tool with a small example. Assume you have a small project mixing C
and Caml code consisting in three files foo.c, bar.ml and bar.mli, and you want to equip them with
some header. First of all, write a header file, i.e. a plain text file including the information headers must
mention. An example of such a file is given in figure 1. In the following, we assume this file is named
myheader and is in the same directory as source files.

Then, in order to generate headers, just run the command:

headache -h myheader foo.c bar.ml bar.mli

1

Headache

Automatic generation of files headers

Vincent Simonet, Projet Cristal, INRIA Rocquencourt

Copyright 2002

Institut National de Recherche en Informatique et en Automatique.

All rights reserved. This file is distributed under the terms of

the GNU Library General Public License.

Vincent.Simonet@inria.fr http://cristal.inria.fr/~simonet/

Figure 1: An example of header file

Each file is equipped with a header including the text given in the header file myheader, surrounded by
some extra characters depending on its format making it a comment (e.g. (* and *) in .ml files). If
you update informations in the header file myheader, you simply need to re-run the above command to
update headers in source code files: existing ones are automatically removed.

Similarly, running:

headache -r foo.c bar.ml bar.mli

removes any existing in files foo.c, bar.ml and bar.mli. Files which do not have a header are kept
unchanged.

The current headers of files can be extracted:

headache -e foo.c bar.ml bar.mli

prints on the standard output the current headers of the files foo.c, bar.ml and bar.mli. All files are
kept unchanged.

4 Configuration file

File types and format of header may be specified by a configuration file. By default, the default builtin
configuration file given in figure 2 is used. You can also use your own configuration file thanks to the -c
option:

headache -c myconfig -h myheader foo.c bar.ml bar.mli

In order to write your own configuration, you can follow the example given in figure 2. A configuration
file consists in a list of entries separated by the character |. Each of them is made of two parts separated
by an ->:

• The first one is a regular expression. Regular expression are enclosed within double quotes and have
the same syntax as in Gnu Emacs. headache determines file types according to file basenames;
thus, each file is dealt with using the first line its name matches.

• The second one describes the format of headers for files of this type. It consists of the name of a
model (e.g. frame), possibly followed by a list of arguments. Arguments are named: open:"(*"

means that the value of the argument open is (*.

headache currently supports three models:

• frame. With this model, headers are generated in a frame. This model requires three arguments:
open and close (the opening and closing sequences for comments) and line (the character used
to make the horizontal lines of the frame). Two optional arguments may be used: margin (a string
printed between the left and right side of the frame and the border, by default two spaces) and
width (the width of the inside of the frame, default is 68).

2

Objective Caml source

".*\\.ml[il]?" -> frame open:"(*" line:"*" close:"*)"

| ".*\\.fml[i]?" -> frame open:"(*" line:"*" close:"*)"

| ".*\\.mly" -> frame open:"/*" line:"*" close:"*/"

C source

| ".*\\.[chy]" -> frame open:"/*" line:"*" close:"*/"

Latex

| ".*\\.tex" -> frame open:"%" line:"%" close:"%"

Misc

| ".*Makefile.*" -> frame open:"#" line:"#" close:"#"

| ".*README.*" -> frame open:"*" line:"*" close:"*"

| ".*LICENSE.*" -> frame open:"*" line:"*" close:"*"

Figure 2: The default builtin configuration file

Script file

| ".*\\.sh" -> frame open:"#" line:"#" close:"#"

| ".*\\.sh" -> skip match:"#!.*"

Figure 3: Example of a configuration file for skipping the shebang line of shell scripts

• lines. Headers are typeset between two lines. Three arguments must be provided: open and close

(the opening and closing sequences for comments), line (the character used to make the horizontal
lines). Three optional arguments are allowed: begin (a string typeset at the beginning of each line,
by default two spaces), last (a string typeset at the beginning of the last line) and width (the
width of the lines, default is 70).

• no. This model generates no header and has no argument.

It is possible to change the default builtin configuration file at compile time. For this, just edit the
file config builtin.txt present in the source distribution before building the software.

It is also possible to add entries into your own configuration file that specify when the initial lines of
the processed file have to be skipped. As previously, these entries are separated by the character | and
each of them is made of two parts separated by an ->:

• Again, the first part is a regular expression used by headache to determine the file type. But here,
it is according to its full filename (including the pathname).

• The second part specifies when the initial lines must be skipped. It consists of the keyword skip

followed by one of the named arguments multiline match: or match:, then a regular expression.
As long as the lines match a multiline match parameter, headache skips them and checks the
next line. If the current line matches only a match parameter, headache skips the current line
and breaks the iteration there (of course, if nothing matches, headache puts the header before the
current line).

Figure 3 shows an example of configuration file that can used to skip the shebang line of shell scripts:
when the first line of .sh files starts with #!, headache does not modify that line and considers that the
header must start at the second line.

Figure 4 shows an example of configuration file that can used for SWI prolog files: for a .pl file
starting with the following three first lines, headache considers that the header must start just after the
first two lines:

#!/usr/bin/env swipl

:- encoding(utf8).

% remainder of the file, that can be after the header

3

SWI Prolog file

| ".*\\.pl" -> frame open:"%" line:"%" close:"%"

| ".*\\.pl" -> skip multiline_match:"#!.*" multiline_match:":-.*"

Figure 4: Example of a configuration file for skipping the shebang line, as well as lines containing Prolog
directives, such as Unicode usage.

4

