
APQ Ada95 Database Binding to
PostgreSQL/MySQL

Copyright (c) 2002-2003, Warren W. Gay VE3WWG

September 7, 2003

2

Contents

1 Introduction 9
1.1 APQ Version 2.1 . 9
1.2 Supported Databases . 9

1.2.1 The Future of Blob Support for MySQL 10
1.3 Generic Database Support . 10

1.3.1 Generic Limitations . 10
1.3.2 Package Structure Reorganization 11
1.3.3 Type Name Reorganization 11

1.4 The APQ Database Binding . 12
1.4.1 General Features . 12
1.4.2 Binding Type . 13

1.5 Binding Data Types . 14
1.5.1 PostgreSQL Data Types . 14
1.5.2 MySQL Data Types . 15

1.6 Database Objects . 15
1.6.1 Object Hierarchy . 16

2 Connecting to the Database 17
2.1 The Connection_Type . 17
2.2 Context Setting Operations . 17

2.2.1 PostgreSQL Defaults . 19
2.2.2 Procedure Set_Host_Name 19
2.2.3 Procedure Set_Host_Address 20
2.2.4 Procedure Set_Port . 20
2.2.5 Procedure Set_DB_Name 20
2.2.6 Procedure Set_User_Password 21
2.2.7 Procedure Set_Options . 21
2.2.8 Procedure Set_Notice_Proc 23

2.3 Connection Operations . 24
2.3.1 Procedure Connect . 24
2.3.2 Connection Cloning . 25
2.3.3 Procedure Disconnect . 26
2.3.4 Procedure Reset . 26

2.4 Connection Information Operations 27

3

4 CONTENTS

2.5 General Information Operations . 28
2.5.1 Function Is_Connected . 28
2.5.2 Function Error_Message . 29
2.5.3 Function Notice_Message 29
2.5.4 In_Abort_State Function . 30

2.6 Implicit Operations . 31
2.6.1 Set_Rollback_On_Finalize Procedure 31
2.6.2 Will_Rollback_On_Finalize Function 32

2.7 Trace Facilities . 32
2.7.1 Procedure Open_DB_Trace 33
2.7.2 Procedure Close_DB_Trace 34
2.7.3 Procedure Set_Trace . 34
2.7.4 Function Is_Trace . 35

2.8 Generic Database Operations . 35
2.8.1 Package APQ . 36
2.8.2 Predicate Engine_Of . 36
2.8.3 Primitive New_Query . 37
2.8.4 Query_Type Assignment . 38

3 SQL Query Support 41
3.1 Initialization . 42

3.1.1 Procedure Clear . 42
3.1.2 Procedure Prepare . 42

3.2 SQL Query Building . 43
3.2.1 Append SQL String . 44
3.2.2 Append SQL Line . 45
3.2.3 Append Quoted SQL String 45
3.2.4 Append Non String Types to SQL Query 46
3.2.5 Generic Append SQL Procedures 47
3.2.6 Generic Append_Timezone 48
3.2.7 Generic Append of Bounded SQL Text 49
3.2.8 Generic Append_Bounded_Quoted Procedure 50
3.2.9 Encoding Quoted Strings . 51
3.2.10 Encoding Quoted Unbounded_String 52
3.2.11 Encoding Bounded Quoted Strings 53
3.2.12 Encoding Non String Values 54
3.2.13 Encoding Timezone . 55

3.3 Query Execution . 56
3.3.1 Error Message Reporting . 57
3.3.2 Is_Duplicate_Key Function 58
3.3.3 Command_Status Function 58
3.3.4 Command_Oid Function . 59
3.3.5 Error Status Reporting . 60
3.3.6 Generic APQ.Result . 64
3.3.7 Generic APQ.Engine_Of . 65
3.3.8 Checked Execution . 65

CONTENTS 5

3.3.9 Suppressing Checked Exceptions 66
3.3.10 Suppressing Checked Reports 67

3.4 Transaction Operations . 67
3.5 Fetch Operations . 69

3.5.1 Fetch Limitations . 69
3.5.2 Fetch Query Modes . 70
3.5.3 Sequential Fetch . 71
3.5.4 Random Fetch . 71
3.5.5 Function End_of_Query . 73
3.5.6 Function Tuple . 73
3.5.7 Rewind Procedure . 74
3.5.8 Tuples Function . 75

3.6 Column Information Functions . 75
3.6.1 Function Columns . 76
3.6.2 Function Column_Name . 76
3.6.3 Function Column_Index . 77
3.6.4 Function Column_Type . 78
3.6.5 Is_Null Function . 79
3.6.6 Column_Is_Null Generic Function 80

3.7 Value Fetching Functions . 81
3.7.1 Function Value . 81
3.7.2 Null_Oid Function . 82
3.7.3 Generic Value Functions . 82
3.7.4 Fixed Length String Value Procedure 84
3.7.5 APQ_Timezone Value Procedure 85
3.7.6 Bounded_Value Function . 86

3.8 Value and Indicator Fetch Procedures 87
3.8.1 Char and Unbounded Fetch 87
3.8.2 Varchar_Fetch and Bitstring_Fetch Procedures 88
3.8.3 Bounded_Fetch Procedure 90
3.8.4 Discrete Type Fetch Procedures 91
3.8.5 Timezone_Fetch Procedure 92

3.9 Information Functions . 93
3.9.1 The To_String Function . 93

4 Blob Support 95
4.1 Introduction . 95
4.2 Blob Memory Leak Prevention . 96
4.3 Create, Open and Close of Blobs . 97

4.3.1 Blob_Create Procedure . 97
4.3.2 Blob_Open Function . 98
4.3.3 Blob_Flush Procedure . 100
4.3.4 Blob_Close Procedure . 101

4.4 Index Setting Operations . 101
4.4.1 Blob_Set_Index Procedure 102

4.5 Blob_Index Function . 102

6 CONTENTS

4.6 Information Functions . 103
4.6.1 Blob Size Function . 103
4.6.2 Blob_OID Function . 104
4.6.3 End_Of_Blob Function . 104

4.7 Stream Access . 105
4.8 Blob Destruction . 106
4.9 File and Blob Operations . 107

5 Utility Functions 109
5.1 To_String Support . 109
5.2 Generic To_String Support . 109
5.3 Conversion Generic Functions . 110
5.4 The Convert_Date_and_Time Generic Function 111
5.5 The Extract_Timezone Generic Procedure 112

6 Calendar Functions 113

7 Decimal Support 115
7.1 Introduction . 115
7.2 Decimal Exceptions . 116
7.3 “Not a Number” Operations . 116
7.4 The Decimal_Type Type . 116
7.5 Is_NaN Function . 116
7.6 Convert Procedure . 117
7.7 To_String Function . 117
7.8 Constrain Function . 118
7.9 Expression Operations . 118
7.10 Minimum and Maximum Values . 119
7.11 Abs_Value, Sign, Ceil and Floor Functions 119
7.12 Sqrt, Exp, Ln and Log10 Functions 120
7.13 The Log Function . 120
7.14 The Power Function . 121
7.15 The Round and Trunc Functions . 121
7.16 Builtin Decimal_Type Constants . 122
7.17 Using Decimal_Types with Query_Type 122

7.17.1 Using Decimal_Type with Append 122
7.17.2 Fetching Decimal_Type Values 122

8 Generic Database Programming 125
8.1 Generic Connections . 125
8.2 Database Specific Code . 126

8.2.1 Row ID Values . 126
8.3 Data Types . 126

8.3.1 Column Types . 127
8.4 Pulling it All Together . 127
8.5 Miscellaneous Portability Issues . 130

CONTENTS 7

8.5.1 Temporary Tables . 131
8.5.2 SELECT ... INTO TABLE 132

9 Troubleshooting 133
9.1 General Problems . 133

9.1.1 Missing Rows After Inserts 133
9.1.2 Missing Time Data (Or Time is 00:00:00) 134
9.1.3 Exception No_Tuple . 135
9.1.4 Database Client Problems 136
9.1.5 Client Performance or Memory Problems 136
9.1.6 Can’t Find Existing Table Names 137
9.1.7 Failed Transactions . 137

9.2 Blob Related Problems . 137
9.3 Blob_Create and Blob_Open Fails 138
9.4 Blob I/O Buffering Bugs Suspected 138
9.5 Transaction Problems . 138

9.5.1 Abnormal Termination of Transactions 138
9.5.2 Aborted Applications . 139

9.6 SQL Problems . 139
9.6.1 Tracing SQL . 139
9.6.2 Too Much Trace Output . 140
9.6.3 Captured SQL Looks OK . 140
9.6.4 You Want to Report a Problem to PostgreSQL 140
9.6.5 Missing Trace Information 140

9.7 Connection Related Problems . 141
9.7.1 Connection Cloning Problems 141
9.7.2 Connection Tracing . 142

10 Appendix A - PostgreSQL Credits 143

11 Appendix B - APQ License 145

12 Appendix C - Ada Community License 147

13 Appendix D - GNU Public License 151

14 Appendix E - Credits 159

15 Appendix F - History 161

8 CONTENTS

Chapter 1

Introduction

1.1 APQ Version 2.1

This manual documents APQ Version 2.1, which is released under a dual ACL and
GPL (GNU Public License) arrangement. The dual license arrangement is designed to
give both the distributor and user the necessary freedoms to enjoy the fair use and dis-
tribution of the sources contained in this project. See file COPYING for more details.

1.2 Supported Databases

The APQ binding was initially created to satisfy the simple need to allow Ada programs
to use a PostgreSQL database. However, as Open Sourced database technologies con-
tinue to advance, the need to allow other databases to be used, becomes greater. Rather
than write a unique Ada binding for each one, it was conceptualized that a common
API could emerge within the APQ framework. To this end, the APQ binding has been
reworked rather extensively for version 2.x, to permit increasing levels of general sup-
port of other database technologies, including MySQL.

The database technologies supported in this version of the APQ binding are:

Database Version SQL Blob

PostgreSQL 1.x Yes Yes
MySQL 2.x Yes No

The above table needs some explanation:

Version is the version of APQ where the database was first supported.

SQL indicates whether the common SQL functions are supported.

Blob indicates whether blob support is present.

9

10 CHAPTER 1. INTRODUCTION

As the reader can observe in the table above, the support for MySQL is incomplete in
APQ 2.1. The blob support is lacking in APQ for MySQL, because MySQL’s blob in-
terface is not as complete as provided by PostgreSQL. Where PostgreSQL provides the
facility for virtually limitless sized blobs, a MySQL blob must fit within a “column”,
very much like a text field. For this reason, the facility to perform stream oriented I/O
is lacking on a blob in APQ for MySQL.

1.2.1 The Future of Blob Support for MySQL

Much investigation and research is required to adequately resolve the blob issue in
APQ. Rather than hold back the binding from general use, where blob functionality
may have limited use anyway, it was decided to release APQ 2.0 with the common API
for the two databases, and leaving the resolution of the blob API for a future release.

If you are a developer, who hopes to write portable database code, then please be
aware that the PostgreSQL blob API is subject to future revision. Potentially, this could
be fairly extensively revised, but every attempt will be made to leave a migration path
open to the developer.

1.3 Generic Database Support

One of the main goals of the APQ version 2.0 release, was to develop a common API,
that does not discriminate based upon the database technology being selected. The
ideal was to allow a developer to write a procedure that would accept a classwide
database objects, and perform database operations without needing to be concerned
whether the database being used was PostgreSQL or MySQL. To a large extent, the
author believes that this goal has been achieved.

1.3.1 Generic Limitations

It must be admited however, there are some areas where the database technologies were
very different. Consequently, some exceptions and work-arounds will be required by
the programmer. An example of this is that MySQL requires that all rows be fetched
from a SELECT query. A failure to do this, corrupts the communication between the
server and the client. Consequently, APQ works around this by defaulting to use the C
library call mysql_store_result() instead of the alternative, which is mysql_use_result().
However, if the result set is large, then receiving all of the rows into the clients memory
is not a suitable choice. Consequently, APQ does provide some MySQL specific ways
to manage this setting.

The MySQL database software also provides the special “LIMIT row_count” ex-
tension, if the client program is only interested in the first n rows of the result. If for
example, you have a price file containing stock price history, you may want to query
the most recent price for it. The simplest way to do this would be to perform a SE-
LECT on the table with a descending price date sort sequence (or index). But if you
only want the first (most recent) row returned, you do not want to retrieve the entire
price history into the memory of your client! This is what mysql_store_result() implies

1.3. GENERIC DATABASE SUPPORT 11

(APQ default). So the application programmer will need to plan for this, when MySQL
is used. He will need to do one of the following:

� Cause mysql_use_result() to be used instead (change the APQ default), and then
fetch all of the rows, one by one.

� Use the MySQL “LIMIT 1” SQL extension to limit the results to 1 row.

The problem of course, is that this type of handling must only be done for MySQL
databases. Consequently, APQ also provides an API so that the application may query
which database is being used.

1.3.2 Package Structure Reorganization

When only one database product was supported, the package hierarchy was simple.
To support multiple databases however, it was necessary to reorganize the package
hierarchy. Additionally, it was recognized that even though the product was dubbed
APQ, the top level package name was PostgreSQL. This was simply poor planning.
This also lead to a possible conflict if a customer site already has a package of that
name. For these reasons, the following changes were made:

� The top level package is now APQ. This matches the product name, and elim-
inates any potential clash with a PostreSQL Ada binding that the PostgreSQL
people may someday release.

� The PostgreSQL support has been moved to APQ.PostgreSQL.

� Client support has moved to APQ.PostgreSQL.Client.

� The MySQL support has been added to APQ.MySQL and APQ.MySQL.Client.

With the new organization, other database products like Oracle, SyBase and DB2 are
possible at some future release.

1.3.3 Type Name Reorganization

In addition to package names, it was quickly realized that a PostgreSQL specific type
name PG_Boolean didn’t seem appropriate in a MySQL context. Consequently, the
naming conventions for data types have migrated from a PG_ prefix, to a more generic
APQ_ prefix instead. The package APQ.PostgreSQL will maintain subtype equiva-
lence definitions for type names, to ease migration of existing PostgreSQL programs
to the newer versions of APQ. However, the programmer is strongly advised to revise
existing programs where possible.

The only completely renamed data type was the renaming of PG_Oid to Row_ID_Type.
Again, the subtype equivalence is available in APQ.PostgreSQL, to ease the migration
to the new APQ versions.

12 CHAPTER 1. INTRODUCTION

1.4 The APQ Database Binding

This software represents a binding to objects and procedures that enable the Ada951

programmer to manipulate or query a relational database This document describes the
design principles and goals of this APQ binding. It also supplies reference documenta-
tion to the programmer, enabling the reader to write applications using the PostgreSQL
or MySQL databases, in the Ada programming language.

The APQ binding was initially developed using GNAT 3.13p under FreeBSD 4.4
release. APQ version 2.0 was developed using Debian Linux and GNAT 3.14p. The
examples presented will be tested under the same development environment.

The source code avoids any use of GNAT specific language extensions. The pos-
sible exception to this rule is that the GNATPREP tool may be used to precompile
optional support of optional databases. There is some C language source code used,
to facilitate Ada and database C language library linkages. The following C language
libraries are necessary in addition to the APQ client library, when linking your appli-
cation:

Library Database

libpq PostgreSQL
libmysqlclient MySQL

GNAT specific features are avoided where possible. The pragma:

pragma Linker_Options(“-lapq”);

is used for example, to save the programmer from having to specify linking arguments.
Therefore those using non-ACT vendor supplied Ada compilers might be able to com-
pile and use this binding without a huge investment.

A 32-bit Windows library for APQ can be built for use with the PostgreSQL and
MySQL DLL client libraries. APQ release 2.1 should include the win32 build instruc-
tions necessary, but has been omitted in the first 2.0 release.

1.4.1 General Features

This binding supports all of the normal database functions that a programmer would
want to use. Additionally blob support is included2, and implemented using the Ada
streams interface. This provides the programmer with the Ada convenience and safety
of the streams interface when working with blobs.

This binding includes the following general features:

1. Open and Close one or more concurrent database connections

2. Create and Execute one or more concurrent SQL queries on a selected database
connection

1Hereafter, we’ll just refer to the language as Ada, even though the version of the language implied is
Ada95.

2For PostgreSQL only, at release 2.0.

1.4. THE APQ DATABASE BINDING 13

3. Begin work, Commit work or Rollback work

4. Access error message text

5. Generic functions and procedures to support specialized application types

6. The NULL indicator is supported

7. Blob support using the Ada streams facility

8. A wide range of native and builtin data types are supported

9. Database neutral API is now supported for most functions

1.4.2 Binding Type

This library represents a thick Ada binding to the PostgreSQL C programmer’s libpq
library 3, and with version 2.0, MySQL’s C programming library. As a thick binding,
there are consequently Ada objects and data types that are tailored specifically to the
Ada programmer. Some data types and objects exist to mirror those used in the C
language, while others are provided to make the binding easier or safer to apply.

A thin binding would have required the Ada programmer to be continually dealing
with C language data type issues. Conversions to and from various types and pointers
would be necessary making the use of the binding rather tedious. Furthermore, the
resulting Ada program would be much harder to read and understand.

A thick binding introduces new objects and types in order to provide an API to
the programmer. This approach however, fully insulates the Ada programmer from
interfacing with C programs, pointers and strings. The design goal has additionally
been to keep the number of new objects and types to a minimum. This has been done
without sacrificing convenience and safety. Readability of the resulting Ada program
was also considered to be important.

The objects and data types involved in the use of this binding can be classified into
the following main groups:

1. Native data types and objects

2. Database manipulation objects

3. New database related objects and types for holding data

Native data types need no explanation in this document. The database manipulation
objects will be described in section 1.6. The following section will introduce the Ada
types that are used to hold data.

3C++ programs can also make use of this library but there exists the library libpq++ for C++ native
support.

14 CHAPTER 1. INTRODUCTION

1.5 Binding Data Types

The PostgreSQL database supports many standard SQL data types as well as a few
exotic ones. This section documents the database base types that are supported by the
Ada binding to the database. This list is expected to grow with time as the Ada binding
continues to mature in its own software development.

The “Data Type Name” column in the following table refers to a binding type if
the type name is prefixed with “APQ_”4. These data types were designed to mimic
common database data types in use. They can be used as they are provided, or you may
subtype from them or even derive new types from them in typical Ada fashion. All
other data types are references to native Ada data types (for some of these, the package
where they are defined are shown in the “Notes” column).

The column labelled “Root Type” documents the data type that the APQ_ data
type was derived from. Where they represent an Ada subtype, the column “Subtype”
indicates a “Y”. For type derivations a “N” is shown in this column, indicating that the
APQ_ type listed is made “unique”.

1.5.1 PostgreSQL Data Types

The “Notes” column of the table shows notes, package names and PostgreSQL data
type names where the name is given in all capitals.

Data Type Name Root Type Subtype PostgreSQL Notes

Row_ID_Type - N Used for blobs and rows
String(<>) - - Native Strings
String(a..b) - - Native fixed length strings
Unbounded_String - - Ada.Strings.Unbounded
Bounded_String - - Ada.Strings.Bounded
APQ_Smallint - N SMALLINT
APQ_Integer - N INTEGER
APQ_Bigint - N BIGINT
APQ_Real - N REAL
APQ_Double - N DOUBLE PRECISION
APQ_Serial - N SERIAL
APQ_Bigserial - N BIGSERIAL
APQ_Boolean Boolean Y BOOLEAN
APQ_Date Ada.Calendar.Time Y DATE
APQ_Time Ada.Calendar.Day_Duration Y TIME (no timezone)
APQ_Timestamp Ada.Calendar.Time N TIMESTAMP (no timezone)
APQ_Timezone Integer N range -23..23
APQ_Bitstring - N BIT or BIT VARYING
Decimal_Type - - Package PostgreSQL.Decimal
range <> - - Native Integers

4Formerly, the PostgreSQL specific types had used a PG_ prefix.

1.6. DATABASE OBJECTS 15

delta <> - - Native Fixed Point
digits <> - - Native Floating Point
delta <> digits <> - - Native Decimal

The data type shown as “Decimal_Type” is special, in that it is supported from
a child package APQ.PostgreSQL.Decimal. It represents a tagged type that provides
an interface to the C routines used by the PostgreSQL database server, for arbitrary
precision decimal values.

1.5.2 MySQL Data Types

The following table summarizes the MySQL specific data types and the corresponding
APQ data types.

APQ Data Type Ada Spec Subtype Comments

Row_ID_Type unsigned 64 bits N For all databases
APQ_Smallint signed 16 bits N SMALLINT
APQ_Integer signed 32 bits N INTEGER
APQ_Bigint signed 64 bits N BIGINT
APQ_Real digits 6 N REAL

APQ_Double digits 15 N DOUBLE [PRECISION]
APQ_Serial range 1..2147483647 N INTEGER

APQ_Bigserial range 1..2**63 N BIGINT
APQ_Boolean Boolean Y BOOLEAN

APQ_Date Ada.Calendar.Time Y DATE
APQ_Time Ada.Calendar.Day_Duration Y TIME

APQ_Timestamp Ada.Calendar.Time N TIMESTAMP
APQ_Timezone range -23..23 N Not in MySQL
APQ_Bitstring array(Positive) of APQ_Boolean N Not in MySQL

Notice the italicized SQL keywords in the table. They identify the SQL keywords
that differ from PostgreSQL. However, the programmer only needs to be concerned
with these SQL keywords when creating new tables or temporary tables. For example
a column of type SERIAL in a PostgreSQL table, should be declared as a INTEGER
type in MySQL.

1.6 Database Objects

Much of the binding between Ada and the database server is provided through the use
of tagged record types. Presently the APQ binding operates through the following three
object types:

Root Type Derived Type Purpose Notes Finalized

16 CHAPTER 1. INTRODUCTION

Root_Connection_Type Connection_Type Connection Required by queries and blobs Yes
Root_Query_Type Query_Type SQL interface Re-usable object. Yes

N/A Blob_Type Blob interface Must be in transaction No

Note that the Connection_Type and Query_Type objects are automatically finalized
when they go out of scope. The Blob_Type however, does not finalize automatically,
because it represents an access type to a Blob_Object. This is similar in concept to an
open a file, using the File_Type data type. This design approach was necessary in order
to support the Streams oriented access to database blobs.

1.6.1 Object Hierarchy

Before multiple database products were supported, the APQ object hierarchy was sim-
ple. To provide generic level support however, there are now root objects and derived
objects. In most application programming contexts, the writer does not need to be con-
cerned with this fact. However, if you frequently inspect the spec files instead of the
documentation, you must be aware that primitives for a given object may be declared
in multiple places. Please examine the following chart:

Package Name Description

APQ Root objects and primitives
APQ.PostgreSQL Declarations and constants unique to PostgreSQL

APQ.PostgreSQL.Client Derived objects and added primitives
APQ.MySQL Declarations and constants unique to MySQL

APQ.MySQL.Client Derived objects and added primitives

From this chart, you can see that support for a given database is derived from the
APQ level package. Root objects are declared in APQ, with common functionality.
Some primitives must be overridden by the derived object. For example, APQ.Root_Query_Type
declares a primitive named Value to return a string column result. If this particular
method is called, the exception Is_Abstract will be raised, to indicate that it must be
overriden with code to handle the specific database being used.

For this reason, the APQ.MySQL.Query_Type object for example, is derived from
the APQ.Root_Query_Type object. This Query_Type object will provide its own im-
plementation of the Value function to return a column result, and so will work as ex-
pected.

So when looking for primitives available to the Query_Type object, don’t forget that
many common primitives will be inherited from the APQ.Root_Query_Type object.
The same is true for Connection_Type objects. They inherit a number of common
primitives from the APQ.Root_Connection_Type object.

Chapter 2

Connecting to the Database

Before any useful work can be accomplished by a client program, a connection must
be established between the Ada program and the database server. This chapter will
demonstrate how to use the APQ binding to enable a program to connect and disconnect
from the database server.

2.1 The Connection_Type

This object holds everything that is needed to maintain a connection to the database
server. There are six groups of primitive operations for this object:

1. Context setting operations

2. Connection operations

3. Connection Information functions

4. General Information operations

5. Implicit operations (Finalization)

6. Trace Facilities

7. Generic Database Operations

2.2 Context Setting Operations

These primitives “configure” the connection that is to be made later. When the object
is initially created, it is in the disconnected state. While disconnected, configuration
changes can be made in to affect the next connection attempt. The application should
not make configuration changes while the object is in the connected state.1

1This is probably not yet enforced by the current version of the APQ binding software.

17

18 CHAPTER 2. CONNECTING TO THE DATABASE

The configuration primitives are the following2:

2The items marked “Root” are primitives from APQ.Root_Query_Type. The items marked “Derived” are
those overrides that are declared on the APQ.*.Query_Type object.

2.2. CONTEXT SETTING OPERATIONS 19

Type Derivation Name Purpose

proc Root Set_Host_Name Set server host name
proc Root Set_Host_Address Set server host IP address
proc Root Set_Port Set server IP port number
proc Root Set_DB_Name Set database name
proc Root Set_User_Password Set userid and password
proc Root Set_Options Set userid and password

2.2.1 PostgreSQL Defaults

The PostgreSQL database defines certain environment variables that can specify de-
faults. These and the fallback values are documented below:

Type Derivation Name Default Fallback

proc Root Set_Host_Name PGHOST localhost
proc Root Set_Host_Address PGHOST localhost
proc Root Set_Port PGPORT 5432
proc Root Set_DB_Name PGDATABASE LOGNAME

proc Root Set_User_Password
PGUSER

PGPASSWORD
LOGNAME

proc Root Set_Options PGOPTIONS ““

The capitalized names shown in the “Default” and “Fallback” columns represent
environment variable names. When any of the environment variables are undefined
in the “Default” column, the value used is determined by the “Fallback” value listed.
The fallback variable name LOGNAME is simply used to represent the current user’s
userid.3 When no password value is provided and no PGPASSWORD environment
variable exists, then no password is assumed.

2.2.2 Procedure Set_Host_Name

The Set_Host_Name procedure accepts the following arguments

Argument in out Type Default

1 C in out Connection_Type -
2 Host_Name in String -

The following example configures the Connection_Type object to connect to host “with-
erspoon”:

3The PostgreSQL libpq library may in fact, completely ignore the LOGNAME environment variable, and
simply look up the userid in the /etc/password file.

20 CHAPTER 2. CONNECTING TO THE DATABASE

declare
C : Connection_Type;

begin
Set_Host_Name(C,”witherspoon”);

2.2.3 Procedure Set_Host_Address

The procedure takes two arguments, in the same fashion as Set_Host_Name:

Argument in out Type Default

1 C in out Connection_Type -
2 Host_Address in String -

The following example configures the Connection_Type object to connect to IP
address 10.0.0.7:

declare
C : Connection_Type;

begin
Set_Host_Address(C,”10.0.0.7”);

2.2.4 Procedure Set_Port

This procedure configures the port where the database server is listening (when using
TCP/IP as the transport):

Argument in out Type Default

1 C in out Connection_Type -
2 Port_Number in Integer -

The following code fragment shows how the port number is configured to use port
5432:

declare
C : Connection_Type;

begin
Set_Port(C,5432);

2.2.5 Procedure Set_DB_Name

This procedure call configures the name of the database that the server is to use when
the connection is established:

Argument in out Type Default

1 C in out Connection_Type -
2 DB_Name in String -

2.2. CONTEXT SETTING OPERATIONS 21

The following code fragment shows how the database name is configured to be
“production”:

declare
C : Connection_Type;

begin
Set_DB_Name(C,”production”);

2.2.6 Procedure Set_User_Password

This procedure call configures both the userid and the password together. If there is no
password, then supply the null string:

Argument in out Type Default

1 C in out Connection_Type -
2 User_Name in String -
3 User_Password in String -

The following example code fragment illustrates how the userid and password is
configured:

declare
C : Connection_Type;

begin
Set_User_Password(C,”myuserid”,”xyzzy”);

2.2.7 Procedure Set_Options

This procedure call permits the caller to specify any specialized database server op-
tions. The options are specified in string form with this API call. The specific options,
and the format of those options will vary according to the database being used. See the
following subsections for additional information about the database engine specifics.

The procedure Set_Options is documented as follows:

Argument in out Type Default

1 C in out Connection_Type -
2 Options in String -

The following PostgreSQL code fragment illustrates how two options may be con-
figured:

declare
C : Connection_Type;

begin
Set_Options(C,”requiressl=1 dbname=test”);

Note that in this example, the option string has been used to declare the database name
to be used. Standard values should be set through the primitive functions provided.

22 CHAPTER 2. CONNECTING TO THE DATABASE

Otherwise, when information primitives are added, you may not get correct results.
Any non-standard options like the “requiressl” option, should be configured in this
procedure call.

PostgreSQL Options

The documentation is not very clear about the format of these options, but it appears
that keyword=value pairs separated by spaces for multiple options are accepted. If you
must include spaces or other special characters within the value component, then you
must follow PostgreSQL escaping rules. Refer to the database server documentation
for these details.

MySQL Options

MySQL’s C interface is much different than PostgreSQL’s C interface for options.
MySQL uses an enumerated value and argument pair when setting an option.4 To
keep the APQ interface friendly and consistent, APQ will accept all options and argu-
ments in a string form as documented in section 2.2.7. However, these string options
must be processed by APQ and digested into arguments usable by the MySQL C client
interface. Consequently, APQ must anticipate these options and the option format in
advance. For these reasons, the MySQL options and their arguments will be partially
documented here.

The format of the option string should be one or more option names and arguments,
separated by commas. Option names are treated as caseless (internally upcased).

Set_Options(C,”CONNECT_TIMEOUT=3,COMPRESS,LOCAL_INFIL=1”);

Each option should be separated by a comma. APQ processes each option in left to
right fashion, making multiple MySQL C API calls for each one.

The following is a list of APQ supported options:

Option Name Argument Type Comments

CONNECT_TIMEOUT Unsigned Seconds
COMPRESS None Compressed comm link

NAMED_PIPE None Windows: use a named pipe
INIT_COMMAND String Initialization command

READ_DEFAULT_FILE String See MySQL
READ_DEFAULT_GROUP String See MySQL

SET_CHARSET_DIR String See MySQL
SET_CHARSET_NAME String See MySQL

LOCAL_INFIL Boolean See MySQL

It is important to observe that any option that requires an argument, must have
one. Any argument that requires an unsigned integer, must have an unsigned integer

4Although, some options do not use the argument.

2.2. CONTEXT SETTING OPERATIONS 23

(otherwise an exception is raised). A Boolean argument should be the value 0 or 1. At
the present time, APQ gathers string data up until the next comma or the end of the
string. Currently an option argument string cannot contain a comma character.5

2.2.8 Procedure Set_Notice_Proc

The PostgreSQL database6 server sends notice messages back to the libpq C library,
that the APQ binding uses. These are received by a callback, after certain database op-
erations have been completed. While the messages are saved in the Connection_Type
object (see also section 2.5.3), they overwrite each other as each new message comes
in. For this reason, it may be desireable for some applications to also receive a call-
back, so that they can process the messages without losing them. The most common
reason to do this is to simply display them on standard error.

The callback procedure must be defined as follows: The default setting for any
new Connection_Type object is
No_Notify.

procedure Notice_Callback(C : in out Connection_Type; Message : String);

The Set_Notice_Proc takes an argument named Notify_Proc that is of the following
type:

type Notify_Proc_Type is access
procedure(C : in out Connection_Type; Message : String);

The Set_Notice_Proc procedure has the following calling signature: Note that the Reset or Discon-
nect call will clear any regis-
tered Notify procedure.# Argument in out Type Default

1 C in out Connection_Type -
2 Notify_Proc in Notify_Proc_Type -

This call can be made at any time to change the Notify procedure. The object may
or may not be connected. The new procedure takes effect immediately upon return, and
will be used when the object is connected. The present implementation only maintains
one such procedure.7

Disabling Notify

The PostgreSQL.Client package provides the special constant No_Notify for the appli-
cation programmer to use. An example of disabling notification follows:

declare
C : Connection_Type;

begin
...
-- Enable notify processing

5This needs to be corrected in a future release of APQ.
6The Set_Notice_Proc procedure is not available with MySQL.
7Note that the replaced procedure is not returned. A future implementation of APQ may address this.

24 CHAPTER 2. CONNECTING TO THE DATABASE

Set_Notify_Proc(C,My_Notify’Access);
...
-- Disable notification
Set_Notify_Proc(C,No_Notify);

Using Standard_Error_Notify

During the debugging phase of a database application, it may be useful to simply have
the notice messages printed on Standard_Error. To do this, simply provide the access
constant Standard_Error_Notify as the second argument:

declare
C : Connection_Type;

begin
...
-- Send notices to stderr
Set_Notify_Proc(C,Standard_Error_Notify);
...

2.3 Connection Operations

The APQ binding provides three primitives for connecting and disconnecting from the
database server. They are summarized in the following table:

Type Name Purpose

proc Connect Connect to the database server
proc Disconnect Disconnect from the database server
proc Reset Disconnect if connected

2.3.1 Procedure Connect

This primitive initiates a connection attempt with the database server as configured by
the section 2.2 primitives. If the connection succeeds, the procedure call returns.The Connect primitive as of

APQ 1.91 automatically ex-
ecutes a ’SET DATESTYLE
TO ISO’ command to guaran-
tee that the APQ date routines
will function correctly, even
when the PGDATESTYLE en-
vironment variable may choose
something other than ISO. This
implies however, that APQ ap-
plications should always for-
mat date information in the ISO
format.

Argument in out Type Default

1 C in out Connection_Type -

The following exceptions may occur:

Exception Name Reason

Not_Connected The connection attempt failed
Already_Connected There is already a connection

The Already_Connected exception indicates that you need to disconnect first, or
use another Connection_Type object if you are maintaining multiple connections.

2.3. CONNECTION OPERATIONS 25

The following is an example call:

declare
C : Connection_Type;

begin
...
begin

Connect(C);
exception

when No_Connection =>
...; -- Handle connection failure

when Already_Connected =>
...; -- Indicates program logic problem

when others =>
raise;

end;

2.3.2 Connection Cloning

Application writers may want additional connections cloned from a given connection.
A web server may want to do this for example. This could be performed by obtain-
ing all of the connection information from the given connection and then proceed to
configure a new connection, but this is tedious and error prone. To clone a new connec-
tion from an existing connection, simply use the Connect primitive with the following
calling signature: The trace settings of the

Same_As object are not carried
to the new object C. You must
manually configure any trace
settings you require in the
newly connected object C.

Argument in out Type Default

1 C in out Connection_Type -
2 Same_As in Connection_Type’Class -

This primitive configures C in the same way that connection Same_As is configured.
Then it creates a connection to the database using these cloned parameters.

The following exceptions may occur:

Exception Name Reason

Not_Connected The connection attempt failed
Already_Connected There is already a connection

The Not_Connected exception can be raised if the Same_As connection is not con-
nected (it must be connected). This same exception can be raised if the new connec-
tion fails (this should rarely happen unless your database is suddenly taken down or
a network failure occurs). The Already_Connected exception is raised if C is already
connected.

The following example shows how a procedure My_Subr can clone a new connec-
tion:

procedure My_Subr(C : Connection_Type) is

26 CHAPTER 2. CONNECTING TO THE DATABASE

C2 : Connection_Type;
begin

Connect(C2,C); -- Clone a connection

2.3.3 Procedure Disconnect

The Disconnect primitive closes the connection that was previously established in the
Connection_Type object. The Disconnect primitive uses the following arguments:

Argument in out Type Default

1 C in out Connection_Type -

The following exceptions may occur:

Exception Name Reason

No_Connection There is no connection to disconnect

The following code fragment shows the procedure call in action:

declare
C : Connection_Type;

begin
...
begin

Disconnect(C);
exception

when No_Connection =>
...; -- Indicates program logic problem

when others =>
raise;

end;

2.3.4 Procedure Reset

The Reset primitive is provided so that the programmer can recycle the Connection_Type
object for use in a subsequent connection. Without this primitive, the user would need
to destroy the original and create a new Connection_Type. The Reset primitive accepts
the following arguments:

Argument in out Type Default

1 C in out Connection_Type -

In addition to closing the current connection, if it is open, the notification procedure
is also deregistered (if there was a Set_Notify_Proc performed).

No exceptions should occur. If there is a connection pending, it is disconnected. If
there is no connection pending, the call is ignored. The following shows an example of

2.4. CONNECTION INFORMATION OPERATIONS 27

its use:
declare

declare
C : Connection_Type;

begin
...
Reset(C); -- C is now ready for re-use

2.4 Connection Information Operations

A modular piece of software may get handed a Connection_Type object as a parameter,
and have a need to inquire about the details of the provided connection. The following
function primitives return information about the connection:

Function Name Information Returned

Host_Name Host name of the connection
Port Port Number or Port Pathname

DB_Name Database name
User User name for the database

Password Password for the database
Options Database option parameters

All of the functions (save one) have the following calling signature:

Argument in out Type Default

1 C in Connection_Type -
returns String

The Port primitive that returns a String is for use with database connections using
a UNIX socket. The socket pathname is returned in this case. When used for TCP/IP
connections, a numeric string representing the IP port number is returned.8

The Port function can return a String type as the rest of the functions do, or it can
return an Integer type instead. This Port primitive has the following signature, and is
useful when IP sockets are used:

Argument in out Type Default

1 C in Connection_Type -
returns Integer

When called on Connection_Type objects without a current connection, an empty
string is returned for any value that has not been configured (for example if Set_Host_Name
has not been called, Host_Name will return “”). If the value has been set, then that value

8A practical, although not foolproof test, is to look for a ’/’ character to see if it is a UNIX socket.

28 CHAPTER 2. CONNECTING TO THE DATABASE

is returned as expected. Once the Connection_Type object is connected to the database
however, the values will be values fetched from the library libpq instead.9

The following code sample shows how to extract the host name and database name
for the current connection.

procedure My_Code(C : in out Connection_Type) is
Host_Name : String := Host_Name(C); -- Get host name of database
Database_Name : String := DB_Name(C); -- Get database name

begin
...

2.5 General Information Operations

Due to the modular construction of software, it is sometimes necessary to query an
object for its present state. The following primitives of the Connection_Type object are
available for querying the state:

Type Name Purpose

func Is_Connected Indicates connected state
func Error_Message Returns a error message text

2.5.1 Function Is_Connected

The Is_Connected function returns a Boolean result that indicates the present state of
the Connection_Type object. The arguments are as follows:

Argument in out Type Default

1 C in Connection_Type -

There are no exceptions raised by this primitive.

The following example shows how to test if the object C is currently supporting a
connection. The example disconnects from the server, if it determines that C is con-
nected.

declare
C : Connection_Type;

begin
...
if Is_Connected(C) then

Disconnect(C);
...

9Normally, these values should agree with what was configured.

2.5. GENERAL INFORMATION OPERATIONS 29

2.5.2 Function Error_Message

The Error_Message function makes it possible for the application to report why the
connection failed. This information is often crucial to the user of a failed application.
The arguments accepted are as follows:

Argument in out Type Default

1 C in Connection_Type -

returns String

There are no exceptions raised by this function. If there is no present connection
or no present error to report, the null string is returned. The following example shows
how the connection failure is reported:

with Ada.Text_IO;
...
declare

use Ada.Text_IO;
C : Connection_Type;

begin
...
begin

Connect(C);
exception

when No_Connection =>
Put_Line(Standard_Error,”Connection Failed!”);
Put_Line(Standard_Error,Error_Message(C));
...

when Already_Connected =>
...; -- Indicates program logic problem

when others =>
raise;

end;

2.5.3 Function Notice_Message

The C libpq interface library10 provides the APQ binding with certain notification mes-
sages during some calls, by means of a callback. Each time one of these notifications
is received from the database server, the notification message is saved in the Connec-
tion_Type object (replacing any former notice message). The last notification message
received can be retreived using the Notice_Message function:

Argument in out Type Default

1 C in Connection_Type -

returns String

10The Notice_Message function is not available for MySQL.

30 CHAPTER 2. CONNECTING TO THE DATABASE

No exception is raised, and the null string is returned if no notice message has been
registered.

The following example illustrates one example of the Notice_Message function:

with Ada.Text_IO;
...
declare

use Ada.Text_IO;
C : Connection_Type;

begin
...
declare

Msg : String := Notice_Message(C);
begin

if Msg’Length > 0 then
Put_Line(Standard_Error,Msg);
...

2.5.4 In_Abort_State Function

Section 3.4 documents the Abort_State exception. This exception is raised in response
to a status flag stored in the Connection_Type object. When a transaction is started,
any SQL error will put the PostgreSQL database server into an “abort state”, where
all current and future commands will be ignored, for the connection11. To permit the
application programmer to query this status, the In_Abort_State function can be used.
It returns True, if an error has occurred within a transaction, which requires a Roll-
back_Work (section 3.4) call to clear this state. The calling requirements are summa-
rized in the following table:

Argument in out Type Default

1 C in Connection_Type -

returns Boolean True if in “abort state“

The following exceptions are possible:

Exception Name Reason

Not_Connected There is no connection to query

The following example shows how this function might be used:

declare
C : Connection_Type;
Q : Query_Type;

begin
...

11MySQL does not support this concept, and so it does not go into an abort state.

2.6. IMPLICIT OPERATIONS 31

Begin_Work(Q,C);
...
Execute(Q,C);
...
if In_Abort_State(C) then

Rollback_Work(Q,C);
...

end if;

2.6 Implicit Operations

There are a few implicit operations that are performed that the programmer should be
aware of. They are:

� The Connection_Type is subject to Finalization

� A default Commit/Rollback operation can occur at Finalization

The programmer is encouraged to call Commit_Work or Rollback_Work explicitly,
whenever possible. This way, the programmer is in complete control of the transaction
outcome.

If a transaction has not been committed or rolled back, and the connected Connec-
tion_Type object is finalized12, then the default action for commit or rollback occurs.
The default for the APQ binding is to rollback the transaction, when the connection
is still active. If the programmer has disconnected from the database prior to finaliza-
tion, then no further action occurs. To change or control the default action, use the
Set_Rollback_On_Finalize procedure described in the next section.

2.6.1 Set_Rollback_On_Finalize Procedure

The Set_Rollback_On_Finalize primitive allows the programmer to change the default
action for the Connection_Type object. The calling requirements are summarized in
the following table: The primitive may be called at

any time prior to the object’s
own finalization.# Argument in out Type Default

1 C in Connection_Type -
2 Rollback in Boolean -

To change the default to COMMIT WORK when the Connection_Type object fi-
nalizes, peform the following call:

declare
C : Connection_Type;

begin
Set_Rollback_On_Finalize(C,False); -- Commit

12Usually because the Connection_Type object has fallen out of scope.

32 CHAPTER 2. CONNECTING TO THE DATABASE

2.6.2 Will_Rollback_On_Finalize Function

Programs sometimes need to inquire about the state of the Connection_Type object
that they may have been passed. To inquire about the commit or rollback default, the
Will_Rollback_On_Finalize function can be called. The following table summarizes
the calling requirements:The primitive may be called at

any time prior to the object’s
own finalization. # Argument in out Type Default

1 C in Connection_Type -

returns Boolean True if will ROLLBACK WORK

2.7 Trace Facilities

No matter how carefully a programmer writes a new program, problems develop that
are often difficult to understand. With good tracing facilities the problem is not only
easily understood, but it becomes easy to correct.

To gain trace support using APQ, it is only necessary to perform the following
steps:

1. Open a trace capture file with Open_DB_Trace

2. Optionally enable/disable tracing at various points in the program with Set_Trace13

3. Perform your SQL operations

4. Close the trace capture file with Close_DB_Trace14

The Open_DB_Trace procedure takes a Trace_Mode_Type parameter that decides what
trace content is being collected. The valid enumerated values are:

APQ.Trace_None Collect no trace information (no file is written/created)

APQ.Trace_DB Collect only C library trace information15

APQ.Trace_APQ Collect only APQ SQL trace information

APQ.Trace_Full Collect both database library (libpq) and Trace_APQ information

The Trace_None value is provided so that the Open_DB_Trace procedure does not
need to be coded around if a trace variable is supplied, which may or may not request
tracing. Close_DB_Trace can be called on a Connection_Type for which Trace_None
is in effect, without any exception being thrown (the call is ignored).

Trace_DB provides only what the C library (libpq for PostgreSQL) provides. This
may be useful to the database software maintainers, if they want a trace of the activity
that you are reporting problems with.

13Tracing is enabled by default after a Open_DB_Trace call.
14Or allow it to be closed when the Connection_Type object is finalized.
15Prior to APQ 2.0, this was Trace_libpq.

2.7. TRACE FACILITIES 33

Trace_APQ is what the author considers to be the most useful output format to an
APQ developer. The trace output in this mode is such that the extra trace information
is provided in SQL comment form. The actual queries that are executed are in their
natural SQL form. The captured Trace_APQ trace then, is in a format that can be
played back, reproducing exactly what the application performed.16 The full trace or
portions of it then can be used to help debug SQL related problems.

The following shows a sample of what the Trace_APQ output looks like:

-- Start of Trace, Mode = TRACE_APQ
-- SQL QUERY:
BEGIN WORK
;
-- Result: ’BEGIN’

-- SQL QUERY:
INSERT INTO DOCUMENT (NAME,DOCDATE,BLOBID,CREATED,MODIFIED,ACCESSED)
VALUES (’compile.adb’,’2002-08-12 21:09:25’,3339004,’2002-08-12 21:59:48’,

’2002-08-12 21:09:25’,’2002-08-19 22:11:36’)
;
-- Result: ’INSERT 3339005 1’

-- SQL QUERY:
SELECT DOCID
FROM DOCUMENT
WHERE OID = 3339005
;
-- Result: ’SELECT’
...
-- SQL QUERY:
COMMIT WORK
;
-- Result: ’COMMIT’
-- End of Trace.

The following subsections describe the primitives that provide support for trace facili-
ties.

2.7.1 Procedure Open_DB_Trace

To start any capture of trace information, you must specify the name of the text file to
be written to. The file must be writable to the current process. The Connection_Type
object must be connected prior to calling Open_DB_Trace:

Argument in out Type Default

1 C in out Connection_Type -
2 Filename in String -
3 Mode in Trace_Mode_Type Trace_APQ

The following exceptions are possible:

16There are limitations however, since the blob functions are not traced at the present release.

34 CHAPTER 2. CONNECTING TO THE DATABASE

Exception Name Reason

Not_Connected There is no connection
Tracing_State Trace is already enabled

Upon return from the Open_DB_Trace procedure, a text file will be created and
ready to have trace entries written to it.17

The following example shows how a call might be coded:

declare
C : Connection_Type;

begin
...
Open_DB_Trace(C,”./bugs.sql”,Trace_APQ);

2.7.2 Procedure Close_DB_Trace

Closing the tracing facility for a connection, suspends all further trace writes. Once
this has been done, the effect of Set_Trace is superceeded, preventing any further trace
information being written. The calling requirements are outlined in the following table:

Argument in out Type Default

1 C in out Connection_Type -

If the Open_DB_Trace call was made with the Mode parameter set to Trace_None,
then the call to Close_DB_Trace has no effect and is ignored for programmer conve-
nience.

No exceptions are raised.
An example call is shown below:

declare
C : Connection_Type;

begin
...
Open_DB_Trace(C,”./bugs.sql”,Trace_APQ);
...
Close_DB_Trace(C);

2.7.3 Procedure Set_Trace

In large applications where large numbers of SQL statements are executed, it may
be desirable to trace only certain parts of its execution in a dynamic fashion. The
Set_Trace primitive gives the programmer a way to disable and re-enable tracing at
strategic points within the application. The calling requirements are summarized as
follows:

17Note that trace entries are buffered by C standard I/O routines, so trace information may be held in
memory buffers before it is flushed out or closed.

2.8. GENERIC DATABASE OPERATIONS 35

Argument in out Type Default

1 C in out Connection_Type -
2 Trace_On in Boolean True

Tracing is enabled by default, after a successful call to Open_DB_Trace is made
(unless Mode was Trace_None).

There are no exceptions raised.
Note that it is considered safe to invoke Set_Trace, even if a former Open_DB_Trace

call was not successfully performed, or the trace mode was Trace_None. This allows
the application to retain strategic Set_Trace calls without having to remove them, when
the Open_DB_Trace call is disabled18 or commented out.

2.7.4 Function Is_Trace

It may be helpful to the developer that is tracking down a problem to know when tracing
is enabled or not. The Is_Trace function returns true when the trace collection file is
receiving trace information. The calling arguments are listed below: The returned value tracks the

last value set by Set_Trace.
True can be returned even when
a trace file is not open when
Trace_None is used, or no
Open_DB_Trace was called.

Argument in out Type Default

1 C in out Connection_Type -
returns Boolean

Note that the initial state of the Connection_Type object is to have Is_Trace to
return True. Also after a successful Open_DB_Trace, Is_Trace will return True.

An example showing its use is given below:

declare
C : Connection_Type;

begin
...
Open_DB_Trace(C,”./bugs.sql”,Trace_APQ);
...
if Is_Trace(C) then

-- We are collecting trace info

2.8 Generic Database Operations

APQ 2.0 is designed so that all but the most specialized database operations, can be
performed, given only a Root_Connection_Type’Class object (declared in top level
package APQ). The following sections describe some generic database related primi-
tives that are necessary for successful generic database support.

18Setting Mode to Trace_None effectively disables the trace facility without requiring any code changes.

36 CHAPTER 2. CONNECTING TO THE DATABASE

2.8.1 Package APQ

Root object support is provided in the package APQ. Generic database code will nor-
mally only use this package:

with APQ;
use APQ; -- Optional use clause

The data types that will be used will be:

� APQ.Root_Connection_Type

� APQ.Root_Query_Type

The generic primitives that will be covered in the next section are:

� APQ.Engine_Of

� APQ.New_Query

2.8.2 Predicate Engine_Of

Given a Root_Connection_Type’Class object, generic database code sometimes needs
to determine which specific database is being used. This allows the code to make
special SQL syntax changes, depending upon the technology being used (for example,
MySQL permits the use of a LIMIT keyword in queries).

The Engine_Of primitive (dispatching) will identify the database technology that
is being used:

Argument in out Type Default Description

1 C in Root_Connection_Type - The connection object
returns Database_Type The database engine used

The data type Database_Type is currently defined as follows (more database en-
gines may follow in future APQ releases):

type Database_Type is (
Engine_PostgreSQL,
Engine_MySQL

);

The following example code shows how to test if a PostgreSQL database is being used:

with APQ; use APQ;
...
procedure App(C : Root_Connection_Type’Class) is
begin

...
if Engine_Of(C) = Engine_PostgreSQL then

...

2.8. GENERIC DATABASE OPERATIONS 37

2.8.3 Primitive New_Query

Normally, an application database procedure will receive a connection object as one of
its input parameters. Generally, this connection is established in the main program and
then used by the program components as required. However, to pass the parameter in a
generic way (allowing for polymorphism), you would declare the procedure’s argument
as receiving data type Root_Connection_Type’Class.

Within the called procedure however, you will need a Query_Type object. This
too could be passed in as an argument, but this is unnecessary. What you need is a
convenient way to create a Query_Type object that matches the connection that you
have received as a parameter. In other words, if your connection object is a:

APQ.PostgreSQL.Client.Connection_Type

object, then your application will want to create a:

APQ.PostgreSQL.Client.Query_Type

object. You want to avoid tests like:

if Connection is in APQ.PostgreSQL.Client.Connection_Type then
...

elsif Connection is in APQ.MySQL.Client.Connection_Type then
...

The above type of code would force your generic code to also with the packages:

with APQ.PostgreSQL.Client;
with APQ.MySQL.Client;
etc.

which would be very inconvenient and unnecessary.
To make generic code easier, APQ provides a dispatching Query_Type object fac-

tory primitive that can be used for this purpose. For example:

with APQ;
use APQ;
procedure My_Generic_App(C : Root_Connection_Type’Class) is

Q : Root_Query_Type’Class := New_Query(C);
begin

Prepare(Q,”SELECT NAME, INCOME”);

Append_Line(Q,”FROM SALARIES”);

The assignment line (for Q) shows the application of the primitive New_Query. This
dispatching primitive returns the correct Query_Type object that matches the connec-
tion that was given. The primitive New_Query is more formally presented as follows:

38 CHAPTER 2. CONNECTING TO THE DATABASE

Argument in out Type Default Description

1 C in Root_Connection_Type - The SQL connection object
returns Root_Query_Type’Class The new Query_Type object

2.8.4 Query_Type Assignment

Prior to APQ version 2.0, the Query_Type object was a limited tagged type. This
meant that the Query_Type object was never able to be assigned to another Query_Type
object. With the need for a factory primitive like New_Query it was necessary to lift
that restriction (otherwise the factory was unable to return the created object). So the
Root_Query_Type and derived forms, permit assignment as of APQ 2.0 and later.

When a Query_Type is assigned in APQ, nothing spectacular happens. In fact,
the contents of the object on the right hand side are effectively ignored, leaving a new
object on the left side. The following example shows how Q1 and Q2 are essentially
the same:

declare
Q0 : Query_Type;
Q1 : Query_Type;
Q2 : Query_Type;

begin
...
Q1 := Q0; -- Q1 becomes initialized (Q0 ignored)
Clear(Q2); -- Initialize Q2

In this example, both Q1 and Q2 end up in the same state, and no state information is
taken from Q0. You might be wondering why would you implement such a thing? The
following generic example illustrates why this is convenient and useful:

with APQ;
use APQ;
procedure My_Generic_App(C : Root_Connection_Type’Class) is

Q : Root_Query_Type’Class := New_Query(C);
begin

Prepare(Q,”SELECT NAME, INCOME”);
Append(Q,”FROM SALARIES”);
Execute(Q,C);
...
declare

Q2 : Root_Query_Type’Class := Q;
begin

...

The example illustrates that the assignment is simply a convenient factory of its own
kind. It is also likely to be slightly more efficient than the New_Query primitive on the
connection. Think of assignment of Query_Type objects as cloning operations. The
assigned object becomes a fresh initialized clone of the Query_Type object on the right
hand side of the assignment.

If you are still scratching your head about this, consider a concrete example:

2.8. GENERIC DATABASE OPERATIONS 39

1. My_Generic_App is called with an argument of type APQ.MySQL.Client.Connection_Type

2. Q gets assigned a new object of type APQ.MySQL.Client.Query_Type to match
the connection (it is a MySQL connection).

3. Q2 gets assigned a new object of type APQ.MySQL.Client.Query_Type to match
the connection.

If the procedure My_Generic_App is called with a PostgreSQL connection, then Post-
greSQL Query_Type objects will be ussed in the procedure instead. This is polymor-
phism at work.

40 CHAPTER 2. CONNECTING TO THE DATABASE

Chapter 3

SQL Query Support

Once a database connection has been established, the application is ready to invoke
operations on the database server. To ease the programmer’s burden in keeping track of
the various components involved in these transactions, the Query_Type object is pro-
vided. The Query_Type object and the Connection_Type object are often used together.
Some primitives do not involve the connection, while others do.

There are a large number of primitives associated with the Query_Type object.
Most of them are related to the large number of data types that are supported. These
primitives fall into the following basic categories:

1. Object initialization

2. SQL Query building

3. SQL Execution

4. Transaction operations

5. Fetch operations

6. Column information functions

7. Value fetching functions

8. Value and Indicator fetching procedures

9. Information operations

In addition to these, are a number of generic functions and procedures that permit the
APQ user to custom tailor the API to his own specialized Ada data types.

41

42 CHAPTER 3. SQL QUERY SUPPORT

3.1 Initialization

The Query_Type object is initialized when the object is instantiated. However, the
Query_Type object is very often re-used as various SQL operations are performed by a
program. To re-use the Query_Type object, one of the following two calls may be used
to recycle it for re-use:

Type Name Purpose

proc Clear Clear object and re-initialize
proc Prepare Reinitialize with start of new SQL query

The Clear procedure does the initialization of the Query_Type object. The Prepare
primitive also invokes Clear.1 The Prepare primitive additionally starts the building
of an SQL query. For short SQL statements, may comletely specify the entire SQL
statement.

3.1.1 Procedure Clear

The Clear primitive completely resets the state of the Query_Type object and accepts
the following arguments:

Argument in out Type Default

1 Q in out Query_Type -

There are no exceptions raised by this call.
The use of the Clear primitive is recommended after all SQL processing related to

the query has been completed. This permits any database server results to be released.
Think of it as “closing” the query.

The following example illustrates it’s use:

declare
C : Connection_Type;
Q : Query_Type;

begin
...
Clear(Q);

3.1.2 Procedure Prepare

The Prepare primitive goes one step further than Clear in that it readies the object for
the start of an SQL statement build. If the query is short, this will be the only building
step required. The Prepare procedure takes the following arguments:

Argument in out Type Default Description

1Consequently, your application need not invoke Clear() prior to calling Prepare().

3.2. SQL QUERY BUILDING 43

1 Q in out Query_Type -
2 SQL in String Starting SQL text
3 After in String Line_Feed Append to SQL text

The SQL argument defines the start of your SQL statement. The After argument
may supply either the default (line feed) or some other text to append to the SQL text.2

It is provided as a programmer convenience, since many times the programmer will
need to append a comma, for example.

There are no exceptions raised by this call.
The following code shows an example of building a query to drop a table:

declare
Q : Query_Type;

begin
...
Prepare(Q,”DROP TABLE DRONE”);

3.2 SQL Query Building

The previous section primitives “cleared” the Query_Type for a new query. The prim-
itives provided in this section help to build a new SQL query or to continue (append
to) the one started by the Prepare call in section 3.1.2. The programmer may start with
a Prepare call and follow it by a number of “append” calls3, or he may call Clear and
build upon an empty query and skip the use of Prepare instead.

There are two broad categories of support for creating SQL queries. They are:

1. Append a value to the SQL query

2. Encode a value or NULL, to the SQL query.

Both of these categories append to the current query. Primitives in category 2 , are
prefixed with Encode and will be described later in the present chapter.

The Append category of support is useful for values that are never NULL (in SQL
terms these columns that are declared as “NOT NULL”). The Encode category of sup-
port is provided for values in your application that may be in the NULL state. It is not
absolutely required that the Encode support be used, since it is possible for the appli-
cation to test for a NULL value. However, the programmer will find that the Encode
support provides application coding convenience and economy of expression. With
compact code, better readability and safety is obtained.

Within category 1, there are five groups of primitives4 that build on the present
query. They are:

1. Append a string

2Don’t forget to allow for additional blanks and commas and such.
3This is probably preferred, since the Prepare call tends to be a good marker for the start of a query.
4The generic procedures have been lumped in with the primitives.

44 CHAPTER 3. SQL QUERY SUPPORT

2. Append a string and a “newline”

3. Append a quoted string

4. Append non string types

5. Append using generic procedures for custom types

Encode support on the other hand, only provides for the needs of variables that must be
communicated to the database server. As a result, the encode procedures consist only
of the following two groups:

1. Encode non-string types

2. Encode using generic procedures for custom types

Presently only the second group is provided for by the APQ binding.5 A future release
may provide builtin support where there currently exists Append support in group 1.

The append procedures (category 1) will be described first and then followed by
the encode procedures (category 2).

3.2.1 Append SQL String

There are two Append procedures for adding SQL text to the Query_Type object. The
difference between them is only in the data type of the SQL argument (#2):

Argument in out Type Default Description

1 Q in out Query_Type -

2 SQL in
String

Ada.Strings.Unbounded.Unbounded_String
- SQL text to append

3 After in String ““ Append to SQL text

There are no exceptions raised by this call.
The following example shows how Append is used:

declare
Q : Query_Type;

begin
...
Prepare(Q,”SELECT CUSTNO,CUST_NAME”);
Append(Q,”FROM CUSTOMER”);

Note that the Prepare call implies a default argument After=New_Line. The calls to
Append merely append the text that you provide to continue the current line. If you
want to put a line feed at the end of “FROM CUSTOMER”, you can either supply the

5The reasoning is that most of the time, the user will want to instantiate the generic procedures anyway.
This permits both the data type and the null indicator type to be a custom application type.

3.2. SQL QUERY BUILDING 45

string New_Line to argument “After” in the Append call, or you can call Append_Line
(See section 3.2.2), which is perhaps clearer code to read.

The After argument is designed to make it easier to build queries because often
commas are required between items. The following example illustrates:

declare
Q : Query_Type;
Col_Name_1 : String := “CUSTNO”;
Col_Name_2 : String := “CUST_NAME”;

begin
...
Prepare(Q,”SELECT ”);
Append(Q,Col_Name_1,”,”);
Append(Q,Col_Name_2,APQ.Line_Feed);
Append(Q,”FROM CUSTOMER”);

This example builds up the same query as the previous example did, except that the
column names were provided by string variables.

3.2.2 Append SQL Line

The Append_Line procedure is provided for added convenience and program readabil-
ity. The same effect can be had with a string Append call, using string APQ.Line_Feed
supplied as the After argument. The Append_Line procedure has the following argu-
ments:

Argument in out Type Default Description

1 Q in out Query_Type -
2 SQL in String SQL text

The Append_Line procedure is one of the few that does not sport an After argument.

3.2.3 Append Quoted SQL String

The Append_Quoted procedure call is designed to make it easier for the programmer
to supply a string value that may contain special characters within it. Since a string
value is already supplied with outer single quotes, any single quote appearing within
the string must be quoted. The Append_Quoted procedure provides the necessary outer
quotes for the SQL query, and escapes any special characters occuring in the string as
well. The two Append_Quoted procedure calls differ only in the data type of the SQL
argument:

Argument in out Type Default Description

1 Q in out Query_Type -

46 CHAPTER 3. SQL QUERY SUPPORT

2 SQL in
String

Ada.Strings.Unbounded.Unbounded_String
- SQL text to quote

3 After in String ““ Additional SQL text

The following example illustrates the use of this call (using the String type):

declare
Q : Query_Type;
Freds_Emporium : String := “Fred’s Emporium”;

begin
...
Prepare(Q,”SELECT COMPNO,COMPANY_NAME”);
Append_Line(Q,”FROM SUPPLIER”);
Append(Q,”WHERE COMPANY_NAME = “);
Append_Quoted(Q,Freds_Emporium,New_Line);

The effect of these calls is to build an SQL query that looks as follows:

SELECT COMPNO,COMPANY_NAME
FROM SUPPLIER
WHERE COMPANY_NAME = ’Fred\’s Emporium’

Notice how the quote character was escaped for use by the database server.

3.2.4 Append Non String Types to SQL Query

A fairly large set of builtin APQ data types are supported by varied Append calls that
differ in the second argument V. The calling requirements can be summarized in the
following table:

Argument in out Type Default Description

1 Q in out Query_Type -

2 V in

Boolean
APQ_Date
APQ_Time

APQ_Timestamp
APQ_Bitstring
Row_ID_Type

SQL value to convert into text

3 After in String ““ Additional SQL text

These Append procedure calls automatically convert the supplied data type in argu-
ment V into a string using a To_String function appropriate to the data type. Internall,
the string Append procedure is then utilized to perform the remaining work. The fol-
lowing example shows how to apply these Append procedure calls:

declare
Q : Query_Type;

3.2. SQL QUERY BUILDING 47

Ship_Date : APQ_Date;
begin

...
Prepare(Q,”SELECT COMPNO,COMPANY_NAME,SHIP_DATE”);
Append_Line(Q,”FROM SUPPLIER”);
Append(Q,”WHERE SHIP_DATE = “);
Append(Q,Ship_Date,New_Line);

The example presented builds an SQL query that looks like this:

SELECT COMPNO,COMPANY_NAME,SHIP_DATE
FROM SUPPLIER
WHERE SHIP_DATE = ’2002-07-21’

Notice that the Append call for APQ_Date automatically supplies the necessary quotes
to the SQL query. All of the data types supported are moulded into a format that is
acceptable in SQL syntax.6

There is one additional Append procedure call that has a special set of arguments
in order to support dates with time zones. The arguments for this procedure call are as
follows:

Argument in out Type Default Description

1 Q in out Query_Type -
2 TS in APQ_Timestamp - Date & Time
3 TZ in APQ_Timezone - Time zone
4 After in String ““ Additional SQL Text

Apart from the different argument names TS and TZ, this procedure works in the
same fashion as the former Append procedure call. The TZ argument simply supplies
the additional time zone information to be added to the timestamp.

3.2.5 Generic Append SQL Procedures

Ada programmers often take advantage of the strong typing that is available in the
language. To accomodate this programming aspect, generic procedures are available
so that type conversions are unnecessary. The following table documents the generic
procedures that accept one generic argument named Val_Type and the data types that
they support:

Procedure Name Data Type Notes

Append_Boolean is new Boolean Any Boolean type
Append_Integer is range <> Any signed integer type

Append_Modular is mod <> Any modular type
Append_Float is digits <> Any floating point type
Append_Fixed is delta <> Fixed point types

6Some of these formats may be database specific.

48 CHAPTER 3. SQL QUERY SUPPORT

Append_Decimal is delta <> digits <> Any decimal type
Append_Date is new Ada.Calendar.Time Any date
Append_Time is new Ada.Calendar.Day_Duration Any time

Append_Timestamp is new APQ_Timestamp Time stamps
Append_Bitstring is new APQ_Bitstring Bit strings

Each of the resulting instantiated procedures provide the following calling signa-
ture:

Argument in out Type Default Description

1 Q in out Query_Type -
2 V in Val_Type - To be converted into SQL text
3 After in String ““ Additional SQL text

The following documents how these are instantiated and used:

declare
type Price_Type is delta 0.01 digits 12;
procedure Append is new Append_Decimal(Price_Type);
Q : Query_Type;
Selling_Price : Price_Type;

begin
...
Prepare(Q,”UPDATE SUPPL_ORDER”);
Append(Q.”SET SELLING_PRICE = “);
Append(Q,Selling_Price,New_Line);
Append_Line(Q,”WHERE ...”);

In this example, the application defines its own unique type Price_Type. After instan-
tiating the Append_Decimal generic procedure as Append, the application is free to
neatly append a price value in Selling_Price, as if it were natively supported.

3.2.6 Generic Append_Timezone

The Append_Timezone has an additional generic paramter, and the instantiated pro-
cedure has a slightly different set of calling arguments. The generic parameters are
documented as follows:

Argument Name Data Type Notes

Date_Type is new Ada.Calendar.Time Any date type
Zone_Type is new APQ_Timezone Any type derived from APQ_Timezone

The instantiated procedure has the following calling signature:

Argument in out Type Default Description

3.2. SQL QUERY BUILDING 49

1 Q in out Query_Type -
2 V in Date_Type - Date To be converted into SQL text
3 Z in Zone_Type - Time zone value
4 After in String ““ Any additional SQL text

The following shows an example of its use:

declare
type Ship_Date_Type is new APQ_Timestamp;
type Ship_Zone_Type is new APQ_Timezone;
procedure Append is new Append_Timezone(Ship_Date_Type,Ship_Zone_Type);
Q : Query_Type;
Ship_Date : Ship_Date_Type;
Ship_Zone : Ship_Zone_Type;

begin
...
Prepare(Q,”SELECT COUNT(*)”);
Append_Line(Q,”FROM ORDER”);
Append(Q,”WHERE SHIP_DATE = “);
Append(Q,Ship_Date,Ship_Zone,New_Line);
...

The example shows how the application’s types Ship_Date_Type and Ship_Zone_Type
are accomodated by the Append instantiation of the generic procedure.

3.2.7 Generic Append of Bounded SQL Text

To accomodate the use of the package Ada.Strings.Bounded, the generic procedure Ap-
pend_Bounded was provided. Its instantiation requirements differ from the preceeding
ones because the instantiation of the Bounded_String type must be provided to the
Append_Bounded generic procedure. The generic procedure is defined as follows:

generic
with package P is new Ada.Strings.Bounded.Generic_Bounded_Length(<>);

procedure Append_Bounded(
Q : in out Query_Type;
SQL : in P.Bounded_String;
After : in String);

In other words, Append_Bounded can be instantiated from any instantiation of the
Ada.Strings.Bounded.Generic_Bounded_Length package. The example makes this
easier to understand:

with Ada.Strings.Bounded;
...
declare

package B80 is new Ada.Strings.Bounded.Generic_Bounded_Length(80);
package B20 is new Ada.Strings.Bounded.Generic_Bounded_Length(20);
procedure Append is new Append_Bounded(B80);
procedure Append is new Append_Bounded(B20);
Q : Query_Type;
Item_Code : B20;

50 CHAPTER 3. SQL QUERY SUPPORT

Item_Name : B80;
begin

...
Prepare(Q,”SELECT COUNT(*)”);
Append_Line(Q,”FROM ORDER”);
Append(Q,”WHERE ITEM_CODE = “,””’);
Append(Q,Item_Code,”’ AND ITEM_NAME = ”’);
Append(Q,Item_Name,””’ & New_Line);
...

The example shows how two different generic procedures named Append are instanti-
ated from the Bounded_String instantiations B80 and B20. Note that the Append_Bounded
procedure does not escape special characters, nor provide the outer quotes.

3.2.8 Generic Append_Bounded_Quoted Procedure

To accomodate the quoting needs of Bounded_Strings, the Append_Bounded_Quoted
generic procedure may be used:

generic
with package P is new Ada.Strings.Bounded.Generic_Bounded_Length(<>);

procedure Append_Bounded_Quoted(
Q : in out Query_Type;
SQL : in P.Bounded_String;
After : in String);

It is otherwise very similar to the previous Append_Bounded procedure. The following
example illustrates a safer version of the prior example:

with Ada.Strings.Bounded;
...
declare

package B80 is new Ada.Strings.Bounded.Generic_Bounded_Length(80);
package B20 is new Ada.Strings.Bounded.Generic_Bounded_Length(20);
procedure Append_Quoted is new Append_Bounded_Quoted(B80);
procedure Append_Quoted is new Append_Bounded_Quoted(B20);
Q : Query_Type;
Item_Code : B20;
Item_Name : B80;

begin
...
Prepare(Q,”SELECT COUNT(*)”);
Append_Line(Q,”FROM ORDER”);
Append(Q,”WHERE ITEM_CODE = “);
Append_Quoted(Q,Item_Code,” AND ITEM_NAME = ”);
Append_Quoted(Q,Item_Name,New_Line);
...

The instantiations of Append_Quoted7 here will properly escape any special characters
that may appear in the program’s string variables Item_Code and Item_Name. Addi-
tionally, note that the outer quotes are provided automatically, easing the programmer’s
burden in building up the SQL query.

7It is not necessary to instantiate these procedures as Append_Quoted, but it is recommended for read-
ability.

3.2. SQL QUERY BUILDING 51

3.2.9 Encoding Quoted Strings

While strings are well covered by the category 1 support, it is necessary to encode a
NULL in place of a quoted string, if the value’s indicator indicates that the value is
null. The instantiation arguments are as follows for Encode_String_Quoted:

Argument Name Data Type Notes

Ind_Type is new Boolean Any Boolean indicator type

The instantiation of Encode_String_Quotedhas the following procedure arguments:

Argument in out Type Default Description

1 Q in out Query_Type -
2 SQL in String - String data value
3 Indicator in Ind_Type - NULL Indicator
4 After in String ““ Any additional SQL text

An example of its instantiation and use is shown below:

declare
type Cust_Name_Ind_Type is new Boolean;
procedure Encode_Quoted is new Encode_String_Quoted(Cust_Name_Ind_Type);
Q : Query_Type;
Cust_Name : String(1..30);
Cust_Name_Ind : Cust_Name_Ind_Type; -- NULL Indicator for Cust_Name

begin
...
Prepare(Q,”UPDATE CUSTOMER”);
Append_Line(Q,”SET CUST_NAME = “);
Encode_Quoted(Q,Cust_Name,Cust_Name_Ind);

In this example, the String Cust_Name is given outer quotes and any special characters
are escaped before the value is appended to the current SQL query being collected in
object Q. If however, the indicator Cust_Name_Ind is True (indicating that the value
Cust_Name should be interpreted as NULL), then the string “NULL” is appended in-
stead. When NULL is supplied, no outer quotes are supplied. The following two SQL
statements are possible, depending upon Cust_Name_Ind. When the indicator is false,
a quoted value is supplied:

UPDATE CUSTOMER
SET CUST_NAME = ’Fred Willard’
...

When the indicator is true, the resulting query becomes this instead:

UPDATE CUSTOMER
SET CUST_NAME = NULL
...

52 CHAPTER 3. SQL QUERY SUPPORT

3.2.10 Encoding Quoted Unbounded_String

To provide quoting support for Unbounded_Strings, the Encode_Bounded_Quotedgeneric
procedure has been supplied. The generic procedure only requires one generic argu-
ment:

Argument Name Data Type Notes

Ind_Type is new Boolean Any Boolean indicator type

After Encode_Bounded_Quoted has been instantiated, the resulting procedure has
the following signature:

Argument in out Type Default Description

1 Q in out Query_Type -
2 SQL in Ada.Strings.Unbounded.Unbounded_String - String data value
3 Indicator in Ind_Type - NULL Indicator
4 After in String ““ Any additional SQL text

An example of its use is as follows:

declare
use Ada.Strings.Bounded;
type Cust_Name_Ind_Type is new Boolean;
procedure Encode_Quoted is new Encode_Unbounded_Quoted(Cust_Name_Ind_Type);
Q : Query_Type;
Cust_Name : Unbounded_String;
Cust_Name_Ind : Cust_Name_Ind_Type; -- NULL Indicator for Cust_Name

begin
...
Prepare(Q,”UPDATE CUSTOMER”);
Append_Line(Q,”SET CUST_NAME = “);
Encode_Quoted(Q,Cust_Name,Cust_Name_Ind);

In this example, the Unbounded_String Cust_Name is given outer quotes and any spe-
cial characters are escaped before the value is appended to the current SQL query being
collected in object Q. If however, the indicator Cust_Name_Ind is True (indicating that
the value Cust_Name should be interpreted as NULL), then the string “NULL” is ap-
pended instead. When NULL is supplied, no outer quotes are supplied. The following
two SQL statements are possible, depending upon Cust_Name_Ind. When the indicator
is false, a quoted value is supplied:

UPDATE CUSTOMER
SET CUST_NAME = ’Fred Willard’
...

When the indicator is true, the resulting query becomes this instead:

UPDATE CUSTOMER
SET CUST_NAME = NULL
...

3.2. SQL QUERY BUILDING 53

3.2.11 Encoding Bounded Quoted Strings

Bounded strings require instantiations of Ada.Strings.Bounded.Generic_Bounded_Length
with a specific length. This means that the instantiation of the package must be pro-
vided as an argment to the Encode_Bounded_Quoted instantiation:

Argument Name Data Type Notes

Ind_Type is new Boolean Any Boolean indicator type
P Ada.Strings.Bounded.Generic_Bounded_Length(<>) Package instantiation

The instantiated procedure has the following signature:

Argument in out Type Default Description

1 Q in out Query_Type -
2 SQL in P.Bounded_String - String data value
3 Indicator in Ind_Type - NULL Indicator
4 After in String ““ Any additional SQL text

An example showing its use is given below:

with Ada.Strings.Bounded;
declare

package B80 is new Ada.Strings.Bounded.Generic_Bounded_Length(80);
type Cust_Name_Ind_Type is new Boolean;
procedure Encode_Quoted is new

Encode_Bounded_Quoted(Cust_Name_Ind_Type,B80);
Q : Query_Type;
Cust_Name : B80.Bounded_String;
Cust_Name_Ind : Cust_Name_Ind_Type; -- NULL Indicator for Cust_Name

begin
...
Prepare(Q,”UPDATE CUSTOMER”);
Append_Line(Q,”SET CUST_NAME = “);
Encode_Quoted(Q,Cust_Name,Cust_Name_Ind);

...

In this example, the Bounded_String Cust_Name is given outer quotes and any special
characters are escaped before the value is appended to the current SQL query being
collected in object Q. If however, the indicator Cust_Name_Ind is True (indicating
that the value Cust_Name should be interpreted as NULL), then the string “NULL”
is appended instead. When NULL is supplied, no outer quotes are supplied. The
following two SQL statements are possible, depending upon Cust_Name_Ind. When
the indicator is false, a quoted value is supplied:

UPDATE CUSTOMER
SET CUST_NAME = ’Fred Willard’
...

When the indicator is true, the resulting query becomes this instead:

54 CHAPTER 3. SQL QUERY SUPPORT

UPDATE CUSTOMER
SET CUST_NAME = NULL
...

3.2.12 Encoding Non String Values

There are a large number of generic encoding procedures that follow the same general
formula. The generic procedures are summarized in the following table:

Procedure Name Data Type Notes

Encode_Boolean is new Boolean Any Boolean type
Encode_Integer is range <> Any signed integer type

Encode_Modular is mod <> Any modular type
Encode_Float is digits <> Any floating point type
Encode_Fixed is delta <> Fixed point types

Encode_Decimal is delta <> digits <> Any decimal type
Encode_Date is new Ada.Calendar.Time Any date
Encode_Time is new Ada.Calendar.Day_Duration Any time

Encode_Timestamp is new APQ_Timestamp Time stamps
Encode_Bitstring is new APQ_Bitstring Bit strings

Instantiation of these generic procedures, require the following two parameters:

Argument Name Data Type Notes

Val_Type <> Type must correspond to generic procedure name
Ind_Type is new Boolean Any Boolean indicator type

All of these generic procedures instantiate a procedure with the following call sig-
nature:

Argument in out Type Default Description

1 Q in out Query_Type -
2 V in Val_Type - SQL data value to encode
3 Indicator in Ind_Type - NULL Indicator
4 After in String ““ Any additional SQL text

The following example shows the use of one of these generic procedures:

declare
type Cust_No_Type is new Integer range 1000..100_000;
type Cust_Age_Type is new Integer range 0..200;
procedure Append is new Append_Integer(Cust_No_Type);
procedure Encode is new Encode_Integer(Cust_No_Type,Boolean);
Q : Query_Type;
Cust_No : Cust_No_Type; -- Customer # NOT NULL
Cust_Age : Cust_Age_Type; -- Customer’s age (can be NULL)
Cust_Age_Ind : Boolean; -- NULL Indicator for Cust_Age

3.2. SQL QUERY BUILDING 55

Cust_Name : String(1..30); -- Customer Name NOT NULL
begin

...
Prepare(Q,”INSERT INTO CUSTOMER (CUST_NO,AGE,CUST_NAME)”);
Append(Q,”VALUES (“);
Append(Q,Cust_No,”,”);
Encode(Q,Cust_Age,Cust_Age_Ind,”,”);
Append_Quoted(Q,Cust_Name,”)” & New_Line);
...

Assuming the Cust_Name variable holds “Martin Mull”, and Cust_No holds 12345,
two possible SQL queries are possible, depending upon the value of Cust_Age_Ind, the
null indicator. When Cust_Age_Ind is false (not null), then the SQL query would be:

INSERT INTO CUSTOMER (CUST_NO,AGE,CUST_NAME)
VALUES (12345,52,’Martin Mull’)

When the indicator Cust_Age_Ind is true (representing null), then the query would be
constructed as follows:

INSERT INTO CUSTOMER (CUST_NO,AGE,CUST_NAME)
VALUES (12345,NULL,’Martin Mull’)

Notice how Append procedures are used for values that can never be null (no null
indicator is involved). Encode routines are only necessary when a null indicator may
require the encoding of the value NULL.

3.2.13 Encoding Timezone

Encoding APQ_Timezone values requires a special generic procedure named Encode_Timezone.
Its generic parameters are described by the following table:

Argument Name Data Type Notes

Date_Type is new APQ_Timestamp Any APQ_Timestamp derived type
Zone_Type is new APQ_Timezone Any APQ_Timezone derived type
Ind_Type is new Boolean Any Boolean indicator type

The instantiated procedure has the following calling arguments:

Argument in out Type Default Description

1 Q in out Query_Type -
2 D in Date_Type - Date value to encode
3 Z in Zone_Type - Time zone to encode
4 Indicator in Ind_Type - NULL Indicator
5 After in String ““ Any additional SQL text

56 CHAPTER 3. SQL QUERY SUPPORT

The following example demonstrates the instantiation and use of the procedure:

declare
type Cust_No_Type is new Integer range 1000..100_000;
type Birthday_Type is new APQ_Timestamp;
procedure Append is new Append_Integer(Cust_No_Type);
procedure Encode is new Encode_Integer(Cust_No_Type,Boolean);
procedure Encode is new

Encode_Timezone(Birthday_Type,APQ_Timezone,Boolean);
Q : Query_Type;
Cust_No : Cust_No_Type; -- Customer # NOT NULL
Birthday : Birthday_Type; -- Customer birthday
Birthday_TZ : APQ_Timezone; -- Timezone of the birthday
Birthday_Ind : Boolean; -- True when Birthday is NULL

begin
...
Prepare(Q,”INSERT INTO BIRTHDAY (CUST_NO,BIRTHDAY)”);
Append(Q,”VALUES (“);
Append(Q,Cust_No,”,”);
Encode(Q,Birthday,Birthday_TZ,Birthday_Ind,”)” & New_Line);
...

If the Birthday_Ind indicator is false (not null), then the resulting query would look
something like this:

INSERT INTO BIRTHDAY (CUST_NO,BIRTHDAY)
VALUES (12345,’1984-09-25 22:47:06+03’)

The “+03” after the time represents the time zone UTC+3 hours.

3.3 Query Execution

Once the SQL query has been constructed using all of the techniques described in
sections 3.1 and 3.2, you are ready to send the query to the database engine to have
it executed. This is done with the help of the Query_Type’s primitive Execute. The
Execute call requires the following calling arguments:

Argument in out Type Default Description

1 Query in out Query_Type - The SQL query object
2 Connection in out Connection_Type’Class - The connection object

The Execute primitive can raise exceptions. They are summarized in the following
table:

Exception Name Reason

Not_Connected There is no connection to use
Abort_State Transaction in “abort state“
SQL_Error The submitted SQL query failed

3.3. QUERY EXECUTION 57

The Abort_State exception is described on page 68 (section 3.4). This exception
indicates that the current transaction has failed. All other types of errors raise the
SQL_Error exception, unless the connection is bad.

The use of the Execute primitive is illustrated by extending the example from page
56:

declare
type Cust_No_Type is new Integer range 1000..100_000;
type Birthday_Type is new APQ_Timestamp;
procedure Append is new Append_Integer(Cust_No_Type);
procedure Encode is new Encode_Integer(Cust_No_Type,Boolean);
procedure Encode is new

Encode_Timezone(Birthday_Type,APQ_Timezone,Boolean);
C : Connection_Type; -- Database connection
Q : Query_Type; -- SQL Query object
Cust_No : Cust_No_Type; -- Customer # NOT NULL
Birthday : Birthday_Type; -- Customer birthday
Birthday_TZ : APQ_Timezone; -- Timezone of the birthday
Birthday_Ind : Boolean; -- True when Birthday is NULL

begin
...
Prepare(Q,”INSERT INTO BIRTHDAY (CUST_NO,BIRTHDAY)”);
Append(Q,”VALUES (“);
Append(Q,Cust_No,”,”);
Encode(Q,Birthday,Birthday_TZ,Birthday_Ind,”)” & New_Line);
Execute(Q,C);

The example shows the Execute primitive pairing the query object Q with the database
connection object C.

3.3.1 Error Message Reporting

It is well and fine to know that your SQL query failed, but more information is usually
necessary. The Error_Message primitive can be invoked on the Query_Type object.
This function has the following calling signature:

Argument in out Type Default Description

1 Query in out Query_Type - The SQL query object
returns String The error message text

The following example shows how this function might be used:

...
begin

Execute(Q,C);
exception

when SQL_Error =>
Put(Standard_Error,”SQL Error: “);
Put_Line(Standard_Error,Error_Message(Q));
raise;

when others =>

58 CHAPTER 3. SQL QUERY SUPPORT

raise;
end;

3.3.2 Is_Duplicate_Key Function

Duplicate key errors often occur while performing SQL INSERT operations on a table.
A duplicate key insertion error is a special case because the insert operation may not
be considered a failure when this happens, for some applications. For this reason, the
Is_Duplicate_Key predicate function is provided for use after a SQL_Error exception
has been raised8. The calling signature is documented as follows:

Argument in out Type Default Description

1 Query in out Query_Type - The SQL query object
returns Boolean True if the Error_Message text indicates a duplicate key

The following example reports an SQL error only if the error is not a duplicate key
insert problem:

...
begin

Execute(Q,C); -- Execute a INSERT SQL statement
exception

when SQL_Error =>
if not Is_Duplicate_Key(Q) then

-- Only report error, if not a duplicate insert
Put(Standard_Error,”SQL Error: “);
Put_Line(Standard_Error,Error_Message(Q));
raise;

end if;
end;

3.3.3 Command_Status Function

The Command_Status function provides a string of status information after a query has
been executed. The results returned depends upon the type of execution that was last
performed. The following table summarizes the types of return status strings available:This is a PostgreSQL specific

function, only. Avoid its use for
portability. After Event Result Comments

CREATE ... “CREATE“
BEGIN WORK “BEGIN“

COMMIT WORK “COMMIT“
ROLLBACK WORK “ROLLBACK“

SELECT ... “SELECT“
INSERT ... “INSERT <OID> <#> # is normally 1

8At present, this test is implemented by calling Error_Message and looking at the message text. Future
versions of the APQ binding may use a more reliable indicator if the PostgreSQL libpq library provides such
a status indication.

3.3. QUERY EXECUTION 59

Notice that after an INSERT is performed, the returned status string includes the
OID (row ID) of the new row, and the number of rows inserted (normally 1). If you
need to extract the OID value, see the Command_Oid function in section 3.3.4.

The calling signature of Command_Status is:

Argument in out Type Default Description

1 Query in out Query_Type - The SQL query object
returns String The command status text

The following exceptions are possible:

Exception Name Reason

No_Result There is no result status (no execution)

3.3.4 Command_Oid Function

After an INSERT operation, it may be necessary to know the Oid (row ID) value for the
newly created row. While this can be extracted from the Command_Status return string
(see section 3.3.3), the Command_Oid function makes this easier. The call signature
for Command_Oid is as follows:

Argument in out Type Default Description

1 Query in out Query_Type - The SQL query object
returns Row_ID_Type The OID of the inserted row

The following exceptions are possible:

Exception Name Reason

No_Result There is no result status (no execution)

Be aware that the exception No_Result can be raised for two different reasons:

� There was no prior “execution” (thus no result)

� The prior execution was not an INSERT operation (hence no OID value)

The following example shows how the INSERTed row’s OID values is obtained:

declare
C : Connection_Type;
Q : Query_Type;
Obj_Id : Row_ID_Type;

begin
...
Prepare(Q,”INSERT INTO CUST_ORDER (CATALOG_NO,QUANTITY,...”);

60 CHAPTER 3. SQL QUERY SUPPORT

...
Execute(Q,C);
Obj_Id := Command_Oid(Q); -- Get row id that was inserted

Portability Note:

Note that some databases do not encourage the use of a row ID. While PostgreSQL
will support an Object ID (OID), MySQL will not return a row ID at all. Yet it is well
recognized, that the application often needs to be able to identify specific rows within
a table. In these cases, a serial value is encouraged instead.

MySQL requires that you use a serial value. To do this, you declare the table with a
key value, that uses the non-standard SQL attribute “AUTO_INCREMENT” to provide
a serial value. Here is an example:

CREATE TABLE MY_TABLE (
ITEM_ID INTEGER AUTO_INCREMENT NOT NULL PRIMARY KEY,
DESCRIPTION VARCHAR(80)

);

If your table includes an “AUTO_INCREMENT” key field like the one above, MySQL
will return its generated serial value using the function Command_OID.

Generic_Command_Oid Function

To allow strong typing to be used in place of the supplied Row_ID_Type type, the
Generic_Command_Oid function can be instantiated for use in the application. The
instantiated function otherwise behaves identical with the Command_Oid function de-
scribed on page 59. The instantiation arguments for Generic_Command_Oid are as
follows:

Argument Type Description

1 Oid_Type is new Row_ID_Type The Specialized Oid type to use

An instantiation example follows:

declare
type My_Oid_Type is new Row_ID_Type;
function Command_Oid is new Generic_Command_Oid(My_Oid_Type);

3.3.5 Error Status Reporting

The Result function primitive is documented here for completeness. Applications
should avoid using this function, since the values that it returns are very database tech-
nology specific.

3.3. QUERY EXECUTION 61

PostgreSQL Result Codes

The PostgreSQL result types are declared in the APQ.PostgreSQL package. The Re-
sult_Type values are highly PostgreSQL engine specific and are enumerated in the
following table:

Name Value Description

Empty_Query 0 The query returned 0 rows of data
Command_OK 1 The non-query statement executed successfully

Tuples_OK 2 The SQL query returned at least 1 row of data
Copy_Out 3
Copy_In 4

Bad_Response 5 Bad response from database server
Nonfatal_Error 6 A non fatal error has occurred

Fata_Error 7 A fatal error has occurred

Note that the numeric values thenselves are subject to change if the PostgreSQL
database server software designers choose to do so. Use the enumerated names instead.

The Result function primitive that returns these values has the following calling
signature:

Argument in out Type Default Description

1 Query in Query_Type - The SQL query object
returns Result_Type The result status (see above)

Notes:
� The Execute primitive will throw an exception if the execution failed (the Non-

fatal_Error case).
� For SELECT queries, the fact that no rows are returned will be identifiable upon

the first FETCH operation (the Empty_Query case), or upon calling End_of_Query.
� When rows are returned (the Tuples_OK case), the application will successfully

fetch at least one row.
� For other SQL commands, successful execution is determined by Execute not

throwing an exception (the Command_OK case).

For these reasons, applications should not normally require the use of the Result func-
tion.

MySQL Result Codes

The enumerated Result_Type type is declared in the package APQ.MySQL. The names
of the different result codes are listed without their values below. This list may expand
or shrink as the MySQL database development continues.

62 CHAPTER 3. SQL QUERY SUPPORT

Code Code

CR_NO_ERROR ER_STACK_OVERRUN

ER_HASHCHK ER_WRONG_OUTER_JOIN

ER_NISAMCHK ER_NULL_COLUMN_IN_INDEX

ER_NO ER_CANT_FIND_UDF

ER_YES ER_CANT_INITIALIZE_UDF

ER_CANT_CREATE_FILE ER_UDF_NO_PATHS

ER_CANT_CREATE_TABLE ER_UDF_EXISTS

ER_CANT_CREATE_DB ER_CANT_OPEN_LIBRARY

ER_DB_CREATE_EXISTS ER_CANT_FIND_DL_ENTRY

ER_DB_DROP_EXISTS ER_FUNCTION_NOT_DEFINED

ER_DB_DROP_DELETE ER_HOST_IS_BLOCKED

ER_DB_DROP_RMDIR ER_HOST_NOT_PRIVILEGED

ER_CANT_DELETE_FILE ER_PASSWORD_ANONYMOUS_USER

ER_CANT_FIND_SYSTEM_REC ER_PASSWORD_NOT_ALLOWED

ER_CANT_GET_STAT ER_PASSWORD_NO_MATCH

ER_CANT_GET_WD ER_UPDATE_INFO

ER_CANT_LOCK ER_CANT_CREATE_THREAD

ER_CANT_OPEN_FILE ER_WRONG_VALUE_COUNT_ON_ROW

ER_FILE_NOT_FOUND ER_CANT_REOPEN_TABLE

ER_CANT_READ_DIR ER_INVALID_USE_OF_NULL

ER_CANT_SET_WD ER_REGEXP_ERROR

ER_CHECKREAD ER_MIX_OF_GROUP_FUNC_AND_FIELDS

ER_DISK_FULL ER_NONEXISTING_GRANT

ER_DUP_KEY ER_TABLEACCESS_DENIED_ERROR

ER_ERROR_ON_CLOSE ER_COLUMNACCESS_DENIED_ERROR

ER_ERROR_ON_READ ER_ILLEGAL_GRANT_FOR_TABLE

ER_ERROR_ON_RENAME ER_GRANT_WRONG_HOST_OR_USER

ER_ERROR_ON_WRITE ER_NO_SUCH_TABLE

ER_FILE_USED ER_NONEXISTING_TABLE_GRANT

ER_FILSORT_ABORT ER_NOT_ALLOWED_COMMAND

ER_FORM_NOT_FOUND ER_SYNTAX_ERROR

ER_GET_ERRNO ER_DELAYED_CANT_CHANGE_LOCK

ER_ILLEGAL_HA ER_TOO_MANY_DELAYED_THREADS

ER_KEY_NOT_FOUND ER_ABORTING_CONNECTION

ER_NOT_FORM_FILE ER_NET_PACKET_TOO_LARGE

ER_NOT_KEYFILE ER_NET_READ_ERROR_FROM_PIPE

ER_OLD_KEYFILE ER_NET_FCNTL_ERROR

ER_OPEN_AS_READONLY ER_NET_PACKETS_OUT_OF_ORDER

ER_OUTOFMEMORY ER_NET_UNCOMPRESS_ERROR

ER_OUT_OF_SORTMEMORY ER_NET_READ_ERROR

ER_UNEXPECTED_EOF ER_NET_READ_INTERRUPTED

ER_CON_COUNT_ERROR ER_NET_ERROR_ON_WRITE

3.3. QUERY EXECUTION 63

ER_OUT_OF_RESOURCES ER_NET_WRITE_INTERRUPTED

ER_BAD_HOST_ERROR ER_TOO_LONG_STRING

ER_HANDSHAKE_ERROR ER_TABLE_CANT_HANDLE_BLOB

ER_DBACCESS_DENIED_ERROR ER_TABLE_CANT_HANDLE_AUTO_INCREMENT

ER_ACCESS_DENIED_ERROR ER_DELAYED_INSERT_TABLE_LOCKED

ER_NO_DB_ERROR ER_WRONG_COLUMN_NAME

ER_UNKNOWN_COM_ERROR ER_WRONG_KEY_COLUMN

ER_BAD_NULL_ERROR ER_WRONG_MRG_TABLE

ER_BAD_DB_ERROR ER_DUP_UNIQUE

ER_TABLE_EXISTS_ERROR ER_BLOB_KEY_WITHOUT_LENGTH

ER_BAD_TABLE_ERROR ER_PRIMARY_CANT_HAVE_NULL

ER_NON_UNIQ_ERROR ER_TOO_MANY_ROWS

ER_SERVER_SHUTDOWN ER_REQUIRES_PRIMARY_KEY

ER_BAD_FIELD_ERROR ER_NO_RAID_COMPILED

ER_WRONG_FIELD_WITH_GROUP ER_UPDATE_WITHOUT_KEY_IN_SAFE_MODE

ER_WRONG_GROUP_FIELD ER_KEY_DOES_NOT_EXITS

ER_WRONG_SUM_SELECT ER_CHECK_NO_SUCH_TABLE

ER_WRONG_VALUE_COUNT ER_CHECK_NOT_IMPLEMENTED

ER_TOO_LONG_IDENT ER_CANT_DO_THIS_DURING_AN_TRANSACTION

ER_DUP_FIELDNAME ER_ERROR_DURING_COMMIT

ER_DUP_KEYNAME ER_ERROR_DURING_ROLLBACK

ER_DUP_ENTRY ER_ERROR_DURING_FLUSH_LOGS

ER_WRONG_FIELD_SPEC ER_ERROR_DURING_CHECKPOINT

ER_PARSE_ERROR ER_NEW_ABORTING_CONNECTION

ER_EMPTY_QUERY ER_DUMP_NOT_IMPLEMENTED

ER_NONUNIQ_TABLE ER_FLUSH_MASTER_BINLOG_CLOSED

ER_INVALID_DEFAULT ER_INDEX_REBUILD

ER_MULTIPLE_PRI_KEY ER_MASTER

ER_TOO_MANY_KEYS ER_MASTER_NET_READ

ER_TOO_MANY_KEY_PARTS ER_MASTER_NET_WRITE

ER_TOO_LONG_KEY ER_FT_MATCHING_KEY_NOT_FOUND

ER_KEY_COLUMN_DOES_NOT_EXITS ER_LOCK_OR_ACTIVE_TRANSACTION

ER_BLOB_USED_AS_KEY ER_UNKNOWN_SYSTEM_VARIABLE

ER_TOO_BIG_FIELDLENGTH ER_CRASHED_ON_USAGE

ER_WRONG_AUTO_KEY ER_CRASHED_ON_REPAIR

ER_READY ER_WARNING_NOT_COMPLETE_ROLLBACK

ER_NORMAL_SHUTDOWN ER_TRANS_CACHE_FULL

ER_GOT_SIGNAL ER_SLAVE_MUST_STOP

ER_SHUTDOWN_COMPLETE ER_SLAVE_NOT_RUNNING

ER_FORCING_CLOSE ER_BAD_SLAVE

ER_IPSOCK_ERROR ER_MASTER_INFO

ER_NO_SUCH_INDEX ER_SLAVE_THREAD

ER_WRONG_FIELD_TERMINATORS ER_TOO_MANY_USER_CONNECTIONS

64 CHAPTER 3. SQL QUERY SUPPORT

ER_BLOBS_AND_NO_TERMINATED ER_SET_CONSTANTS_ONLY

ER_TEXTFILE_NOT_READABLE ER_LOCK_WAIT_TIMEOUT

ER_FILE_EXISTS_ERROR ER_LOCK_TABLE_FULL

ER_LOAD_INFO ER_READ_ONLY_TRANSACTION

ER_ALTER_INFO ER_DROP_DB_WITH_READ_LOCK

ER_WRONG_SUB_KEY ER_CREATE_DB_WITH_READ_LOCK

ER_CANT_REMOVE_ALL_FIELDS ER_WRONG_ARGUMENTS

ER_CANT_DROP_FIELD_OR_KEY ER_NO_PERMISSION_TO_CREATE_USER

ER_INSERT_INFO ER_UNION_TABLES_IN_DIFFERENT_DIR

ER_INSERT_TABLE_USED ER_LOCK_DEADLOCK

ER_NO_SUCH_THREAD ER_TABLE_CANT_HANDLE_FULLTEXT

ER_KILL_DENIED_ERROR ER_CANNOT_ADD_FOREIGN

ER_NO_TABLES_USED ER_NO_REFERENCED_ROW

ER_TOO_BIG_SET ER_ROW_IS_REFERENCED

ER_NO_UNIQUE_LOGFILE CR_UNKNOWN_ERROR

ER_TABLE_NOT_LOCKED_FOR_WRITE CR_SOCKET_CREATE_ERROR

ER_TABLE_NOT_LOCKED CR_CONNECTION_ERROR

ER_BLOB_CANT_HAVE_DEFAULT CR_CONN_HOST_ERROR

ER_WRONG_DB_NAME CR_IPSOCK_ERROR

ER_WRONG_TABLE_NAME CR_UNKNOWN_HOST

ER_TOO_BIG_SELECT CR_SERVER_GONE_ERROR

ER_UNKNOWN_ERROR CR_VERSION_ERROR

ER_UNKNOWN_PROCEDURE CR_OUT_OF_MEMORY

ER_WRONG_PARAMCOUNT_TO_PROCEDURE CR_WRONG_HOST_INFO

ER_WRONG_PARAMETERS_TO_PROCEDURE CR_LOCALHOST_CONNECTION

ER_UNKNOWN_TABLE CR_TCP_CONNECTION

ER_FIELD_SPECIFIED_TWICE CR_SERVER_HANDSHAKE_ERR

ER_INVALID_GROUP_FUNC_USE CR_SERVER_LOST

ER_UNSUPPORTED_EXTENSION CR_COMMANDS_OUT_OF_SYNC

ER_TABLE_MUST_HAVE_COLUMNS CR_NAMEDPIPE_CONNECTION

ER_RECORD_FILE_FULL CR_NAMEDPIPEWAIT_ERROR

ER_UNKNOWN_CHARACTER_SET CR_NAMEDPIPEOPEN_ERROR

ER_TOO_MANY_TABLES CR_NAMEDPIPESETSTATE_ERROR

ER_TOO_MANY_FIELDS CR_CANT_READ_CHARSET

ER_TOO_BIG_ROWSIZE CR_NET_PACKET_TOO_LARGE

The application should avoid direct reference to these database specific codes,
where possible.

3.3.6 Generic APQ.Result

To enable generic database processing, APQ version 2.0 adds a new API function
which is declared at the APQ.Root_Query_Type object level. This function returns
a Natural result:

3.3. QUERY EXECUTION 65

Argument in out Type Default Description

1 Query in Query_Type - The SQL query object
returns Natural The result status (see above)

The value returned, represents the Result_Type’Pos(arg). In generic database code,
you could use this generic function to retrieve the value. Later it can be turned into
the appropriate Result_Type if required by doing a conversion. The following example
illustrates:

with APQ.MySQL.Client, APQ.PostgreSQL.Client;
...
procedure App(Q : Root_Query_Type’Class) is

R : Natural;
PQ_R : APQ.PostgreSQL.Result_Type;
My_R : APQ.MySQL.Result_Type;

begin
...
R := APQ.Result(Q);
if APQ.Engine_Of(Q) = Engine_MySQL then

My_R := APQ.MySQL.Result_Type’Val(R);
...

The code above demonstrates how generic database code is able to test for specific
database error codes, when it is necessary.

3.3.7 Generic APQ.Engine_Of

As seen in the example of section 3.3.6, it is sometimes necessary to determine in
generic code, what database technology is being used. Once this fact is known, the
correct more specific action can be taken. Or in some cases, special actions must be
performed in addition to the norm, for certain database technologies.

The function primitive Engine_Of can be used to determine the database technol-
ogy being used:

Argument in out Type Default Description

1 Q in Root_Query_Type - The SQL query object
returns Database_Type The database engine used

3.3.8 Checked Execution

For many utility programs where error reporting and recovery have simple require-
ments, a more compact and convenient way to execute queries can be applied. With
checked execution, the query is not only executed, but any SQL errors are intercepted
and reported to Standard_Error automatically. This saves the programmer effort when
writing simple utility programs. Once the SQL_Error exception is intercepted and re-
ported, the exception is re-thrown to leave control in the caller’s realm. The important

66 CHAPTER 3. SQL QUERY SUPPORT

thing here is that the error is caught and reported.
The Execute_Checked primitive has the following calling signature:

Argument in out Type Default Description

1 Query in out Query_Type - The SQL query object
2 Connection in out Connection_Type’Class - The connection object
3 Msg in String ““ Error message text

When the argument Msg is a non null length string like “Dropping table temp_tbl”,
the error message reported will be of the following format:

*** SQL ERROR: Dropping table temp_tbl
[FATAL_ERROR: ERROR: Relation “temp_tbl” does not exist]

The first line just identifies the fact that an SQL error occurred, and reports the Msg
text. The second line first reports Result_Type’Image of the error, and then reports
the error message text as returned by Error_Message. In this case, the example shows
that Result_Type Fatal_Error was returned, and the error message returned from the
database server was “ERROR: Relation “temp_tbl” does not exist”.

When the null string (or the default value for the parameter) is given to argument
Msg, then the SQL query is dumped out to Standard_Error instead. This is often useful
for debugging purposes.

Changing the example found on page 56 slightly, we can apply the Execute_Checked
primitive in the place of the Execute call.

declare
type Cust_No_Type is new Integer range 1000..100_000;
type Birthday_Type is new APQ_Timestamp;
procedure Append is new Append_Integer(Cust_No_Type);
procedure Encode is new Encode_Integer(Cust_No_Type,Boolean);
procedure Encode is new

Encode_Timezone(Birthday_Type,APQ_Timezone,Boolean);
C : Connection_Type; -- Database connection
Q : Query_Type; -- SQL Query object
Cust_No : Cust_No_Type; -- Customer # NOT NULL
Birthday : Birthday_Type; -- Customer birthday
Birthday_TZ : APQ_Timezone; -- Timezone of the birthday
Birthday_Ind : Boolean; -- True when Birthday is NULL

begin
...
Prepare(Q,”INSERT INTO BIRTHDAY (CUST_NO,BIRTHDAY)”);
Append(Q,”VALUES (“);
Append(Q,Cust_No,”,”);
Encode(Q,Birthday,Birthday_TZ,Birthday_Ind,”)” & New_Line);
Execute_Checked(Q,C); -- Report errors if SQL_Error is raised

3.3.9 Suppressing Checked Exceptions

For utility work, it is sometimes convenient to have Execute_Checked report errors, but
not raise SQL_Error. This is useful when you don’t care about the outcome but want
the error to be reported when detected. The raising or not raising of SQL_Error can be

3.4. TRANSACTION OPERATIONS 67

controlled for the Execute_Checked primitive by calling Raise_Exceptions. It has the
following calling requirements:

Argument in out Type Default Description

1 Query in out Query_Type - The SQL query object
2 Raise_On in Boolean True Enable/Disable raising SQL_Error

The following example shows how exceptions can be suppressed:

declare
C : Connection_Type; -- Database connection
Q : Query_Type; -- SQL Query object

begin
...
Raise_Exceptions(Q,False); -- Suppress SQL_Error exception
Execute_Checked(Q,C); -- Report errors only
Raise_Exceptions(Q,True); -- Re-enable SQL_Error exceptions

3.3.10 Suppressing Checked Reports

Occaisionally, it is useful to control whether or not reporting is performed in the event
of an SQL_Error. The reporting of errors can be controlled by the Report_Errors prim-
itive procedure:

Argument in out Type Default Description

1 Query in out Query_Type - The SQL query object
2 Report_On in Boolean True Enable/Disable reporting SQL_Error

The default behaviour of a Query_Type is to report errors and raise SQL_Error
when Execute_Checked experiences an SQL_Error exception. The reporting behaviour
can be disabled as follows:

declare
C : Connection_Type; -- Database connection
Q : Query_Type; -- SQL Query object

begin
...
Report_Errors(Q,False); -- Suppress error reporting
Execute_Checked(Q,C);

Normally application programmers would not use Execute_Checked with error report-
ing disabled. However, it may be useful as a temporary measure to cause error reporting
while debugging a program. Once the debugging has been completed, a global Boolean
value could be set to false to prevent these errors from being reported.

3.4 Transaction Operations

Transaction operations consist of:

68 CHAPTER 3. SQL QUERY SUPPORT

� BEGIN WORK

� COMMIT WORK

� ROLLBACK WORK

It is possible to build your own queries to accomplish these operations but the program-
mer is encourage to use the primitive operations below instead. One reason for using
the APQ provided functions is to make your application portable to different databases.
Sometimes there are slight variations on the SQL syntax required for the purpose. Ad-
ditionally, it may be possible in the future to query the state of the transaction.9

The three primitives are named according to function :

Primitive Name SQL Function

Begin_Work BEGIN WORK
Commit_Work COMMIT WORK
Rollback_Work ROLLBACK WORK

Each of these primitives have the following calling signature:

Argument in out Type Default Description

1 Query in out Query_Type - The SQL query object
2 Connection in out Connection_Type’Class - The connection object

These primitives will raise the following exceptions:

Exception Name Reason

Not_Connected There is no connection
Abort_State A ROLLBACK is required
SQL_Error This should not normally occur

The Abort_State10 exception indicates that the database was in a transaction11 when
a processing error occurred (like a duplicate key on insert error). Once an error is en-
countered within a transaction, the only course to recovery is by executing a ROLL-
BACK WORK statement (this is done by the Rollback_Work call shown above). If
duplicate inserts may occur, you must test for them in advance of the INSERT, to avoid
placing the transaction into the “abort state”.

The “abort state” itself is maintained in the Connection_Type object, causing the
state to influence all Query_Type objects using the same connection. To clear the status,
you must perform a Rollback_Work call on any Query_Type object, using the affected
Connection_Type object where the status is saved.

The Query_Type object is used to form the SQL statement and to hold the result
status. In application programming, you may want to dedicate one Query_Type object

9It is likely that a function like an In_Transaction function will be added at a future date.
10The abort state is currently unique to PostgreSQL. MySQL tolerates failed steps within a transaction.
11A “BEGIN WORK” statement was executed.

3.5. FETCH OPERATIONS 69

for each transaction in progress.12 The following simple example demonstrates the use
of these primitives:

declare
C : Connection_Type;
Q : Query_Type;

begin
...
Begin_Work(Q,C);
...
Commit_Work(Q,C);

3.5 Fetch Operations

Some database operations, particularly SELECT, return results. There are two fetch
related primitives:

1. Sequential row fetch

2. Random access row fetch

The sequential fetch permits serial access of the resulting rows (tuples). Random access
fetching permits rapid access to particular row results.

3.5.1 Fetch Limitations

Some databases like PostgreSQL have no limitations on how row data is fetched. The
fetch may be sequential or random, as the application requires. Some other databases
however, require some planning by the application programmer in this area. This dis-
tinction, and the API to control this problem is new to APQ 2.0, for database engines
that require it.

For example, MySQL retrieves row data into the client program’s address space in
one of two ways:

� one row at a time, but all rows must be fetched

� all rows are loaded into client memory, for random access by the application

For large result sets, fetching one row13 at a time is very practical. However, MySQL
requires that the program fetch all row data. If the result set is large, and only an initial
number of rows are required, this can be a serious performance issue.

When random access14 of rows is required, MySQL requires that all row data be
retrieved and stored into the client program. Fetching all of this data into client memory
can be impractical for size reasons when the number of rows are large (there is an SQL
work-around for this).

12This will be important later, if you want to query whether or not you are in a transaction.
13This is done using the mysql_use_result() function.
14This is done using the mysql_store_result() function.

70 CHAPTER 3. SQL QUERY SUPPORT

The default APQ query mode is to assume that random access will be required.
Note that sequential access is always permitted, even in random access mode (APQ
hides this complication). If the application programmer is using a database that is
limited in this way (MySQL), and has determined that fetching all results into client
memory is not suitable, then the mode of the Query_Type needs to be changed by the
program to use sequential access instead. See the next few sections on how to control
the fetch query mode.

If you are only planning to use PostgreSQL, you can effectively ignore the sections
about Fetch Query modes. However, if you plan to write your application in a database
generic sort of way, you need to plan for the fetch query modes in your code.

3.5.2 Fetch Query Modes

Due to the performance limitations of different database engines (see preceding sec-
tion), APQ provides the application programmer a way to control the fetch query mode.
Package APQ defines the following type for this purpose:

type Fetch_Mode_Type is (
Sequential_Fetch,
Random_Fetch

);

By default, APQ assumes that the application programmer will need random access to
row data. Hence the mode in effect is Random_Fetch by default. The Fetch_Mode
function returns the current state of the Query_Type object:

Argument in out Type Default Description

1 Q in Root_Query_Type - The SQL query object
returns Fetch_Mode_Type The fetch mode in effect

To change the current mode in effect, use the function Set_Fetch_Mode :

Argument in out Type Default Description

1 Q in out Root_Query_Type - The SQL query object
2 Mode in Fetch_Mode_Type - The new fetch mode

The application should only change the query mode prior to the execution of the
query. When Execute or Execute_Checked are called, APQ must commit to the
method that rows are being fetched. For this reason, set the query mode when the
Query_Type is initially declared, after a call to Reset or Prepare, or prior to calling
Execute.

The following exceptions may be raised by Set_Fetch_Mode :

Exception Name Reason

Failed Query results exist - cannot change mode

3.5. FETCH OPERATIONS 71

3.5.3 Sequential Fetch

The Query_Type object is always positioned at the first row after the query has been
executed. Sequential fetches can then be performed to retrieve the first through to the
last resulting row. The sequential Fetch primitive has the following calling arguments:

Argument in out Type Default Description

1 Query in out Query_Type - The SQL query object

A sequential fetch can always be made, whether the query object is in sequential or
random mode. However, be aware that some databases (MySQL) require that all rows
be fetched when in Sequential_Fetch mode. Note that the APQ default is to fetch in
Random_Fetch mode. See section 3.5.2 to change this.

The Fetch primitive can raise the following exceptions:

Exception Name Reason

No_Result There was no command executed
No_Tuple There were no result rows returned

The No_Result exception is raised when the Query_Type object is in the wrong
state. For example, if the Query_Type object is cleared, and/or an SQL query is built
but not Executed, then a No_Result exception will be raised.

The No_Tuple exception is raised when a Fetch is attempted when no resulting
rows were returned by the database server. This exception can be avoided by calling
the information function End_of_Query first, to see if there are any more rows to fetch.
The End_of_Query function will be documented later. The following example shows
how a sequential fetch is used:

declare
C : Connection_Type;
Q : Query_Type;

begin
Prepare(Q,”SELECT CUST_NO,CUST_NAME”);
Append(Q,”FROM CUSTOMER”);
Execute(Q,C);
while not End_of_Query(Q) loop

Fetch(Q);
...

end loop;
Clear(Q);

Clearing the query (or allowing it to fall out of scope) is recommended. This releases
resources that are holding any prior query results.

3.5.4 Random Fetch

APQ assumes that random row fetches will be required by the application by default.
The random fetch operation requires the use of the Tuple_Index_Type defined in the

72 CHAPTER 3. SQL QUERY SUPPORT

package APQ:

type Tuple_Index_Type is new Positive;

Some databases like MySQL, have special fetch requirements. For those databases,
you must ensure that the Query_Type object is in Random_Fetch mode (default). See
section 3.5.2 to see how to query and set the fetch mode for these types of database
engines.

The random Fetch primitive has the following calling arguments:

Argument in out Type Default Description

1 Query in out Query_Type - The SQL query object
2 TX in Tuple_Index_Type - The row # to fetch

Possible exceptions include:

Exception Name Reason

No_Result There was no command executed
No_Tuple There were no result rows returned

A random fetch example is provided below:

declare
C : Connection_Type;
Q : Query_Type;

begin
Prepare(Q,”SELECT CUST_NO,CUST_NAME”);
Append(Q,”FROM CUSTOMER”);
Execute(Q,C);
for TX in 1..Tuple_Index_Type(Tuples(Q)) loop

Fetch(Q,TX);
...

end loop;
Clear(Q);

The function Tuples(Q) that was used in the for loop, returns the number of result rows
for the query.15 A slight modification of this loop could permit processing the rows in
reverse order.

Notes:

1. If the tuple index TX provided to Fetch is out of range for the result set, no excep-
tion will be raised. An exception will be raised however, when the application
attempts to fetch any value from that out of range row.

2. Any subsequent sequential fetch operation will fetch the row following the last
randomly accessed row.

15Which can be zero.

3.5. FETCH OPERATIONS 73

3.5.5 Function End_of_Query
This function is depreciated.
Catch the No_Tuple exception
instead for greater database
portability.

To facilitate sequential fetch operations, the End_of_Query primitive function has been
provided. You have already seen this function used with the sequential fetch example
on page 71. The calling requirements are summarized in the following table:

Argument in out Type Default Description

1 Query in Query_Type - The SQL query object
returns Boolean True when no more rows

The function can raise the following exceptions:

Exception Name Reason

No_Result There was no command executed

The End_of_Query function returns a Boolean result:

False there is at least one more result row available (not at end)

True there are no more rows available (at end)

MySQL Note

The MySQL implementation of End_Of_Query is not a good one and so End_Of_Query
should be avoided entirely in new code. The problem is located in the MySQL C API
that is provided. The C mysql_eof() function returns false after reading the last row.
It is only by fetching one more row and discovering that there are no more rows, that
mysql_eof() then starts to return true. In other words, it returns true, when the end has
already been reached. Since there is no way to work around this problem in MySQL, a
generic database developer should avoid using End_Of_Query completely.

Catch the exception No_Tuple instead, when fetching rows.

3.5.6 Function Tuple

The Tuple function primitive is an information function that returns the current tuple
number that was last fetched. If there has been no fetch yet, the No_Tuple exception is
raised. The calling signature is as follows:

Argument in out Type Default Description

1 Query in Query_Type - The SQL query object
returns Tuple_Index_Type The last row number fetched

The exceptions that are possible include:

Exception Name Reason

No_Tuple There was no fetch performed yet

74 CHAPTER 3. SQL QUERY SUPPORT

The following example shows the function being used:

declare
C : Connection_Type;
Q : Query_Type;
X : Tuple_Index_Type;

begin
Prepare(Q,”SELECT CUST_NO,CUST_NAME”);
Append(Q,”FROM CUSTOMER”);
Execute(Q,C);
while not End_of_Query(Q) loop

Fetch(Q);
TX := Tuple(Q); -- Get Row #
...

end loop;
Clear(Q);

3.5.7 Rewind Procedure

Sometimes it is desireable to reprocess results sequentially. This is easily accomplished
with the Rewind primitive. This primitive merely alters the state of the Query_Type
object such that the next fetch operation will start with the first row.

The calling requirements are listed in the following table:

Argument in out Type Default Description

1 Query in Query_Type - The SQL query object

The following exceptions can be raised:

Exception Name Reason

SQL_Error The Query_Type is not in Random_Fetch mode

The following example shows the Rewind procedure being used:

declare
C : Connection_Type;
Q : Query_Type;

begin
Prepare(Q,”SELECT CUST_NO,CUST_NAME”);
Append(Q,”FROM CUSTOMER”);
Execute(Q,C);
while not End_of_Query(Q) loop

Fetch(Q);
...

end loop;
-- REPROCESS THE QUERY RESULTS :
Rewind(Q);
while not End_of_Query(Q) loop

3.6. COLUMN INFORMATION FUNCTIONS 75

Fetch(Q);
...

end loop;
Clear(Q);

3.5.8 Tuples Function

You have already seen this function used in the example on page 72. This information
function returns the number of result rows that are available. It should only be called
after the Query_Type has been executed however. Otherwise the No_Result exception
will be raised.

The calling signature for this function is summarized in the following table:

Argument in out Type Default Description

1 Query in Query_Type - The SQL query object
returns Natural The number of result rows

The exceptions that are possible are summarized in the next table:

Exception Name Reason

No_Result There was no execute performed yet

For an example of use, see page 72.

3.6 Column Information Functions

After a query has been executed, which returns a set of rows, it is sometimes neces-
sary to obtain information about the columns. Many of the functions make use of the
following data type:

type Column_Index_Type is new Positive;

There are four column information functions:

Function Name Purpose

Columns Return the # of columns in each row
Column_Name Return the column name for an index value
Column_Index Return the index for a column name
Column_Type Return type information for the column

Is_Null Test if a column is null

All of these functions will raise the exception No_Result if an execute has not been
performed successfully on the Query_Type object.

76 CHAPTER 3. SQL QUERY SUPPORT

3.6.1 Function Columns

The Columns primitive function returns the number of columns available in each row
of the result set. The calling arguments are summarized as follows:

Argument in out Type Default Description

1 Query in Query_Type - The SQL query object
returns Natural The number of result columns

The function may raise the following exceptions:

Exception Name Reason

No_Result There was no execute performed

The following example shows the function in use:

declare
C : Connection_Type;
Q : Query_Type;

begin
Prepare(Q,”SELECT CUST_NO,CUST_NAME”);
Append(Q,”FROM CUSTOMER”);
Execute(Q,C);
while not End_of_Query(Q) loop

Fetch(Q);
for CX in 1..Column_Index_Type(Columns(Q)) loop

...process each column...
end loop

end loop;
Clear(Q);

3.6.2 Function Column_Name

The primitive Column_Name returns the name of the column for a particular column
index value. The calling requirements are summarized in the following table:

Argument in out Type Default Description

1 Query in Query_Type - The SQL query object
2 CX in Column_Index_Type - The column index number

returns String The column name

The function may raise the following exceptions:

Exception Name Reason

No_Result There was no execute performed
No_Column Bad Column_Index_Type value

The following example shows the function in use:

3.6. COLUMN INFORMATION FUNCTIONS 77

declare
C : Connection_Type;
Q : Query_Type;

begin
Prepare(Q,”SELECT CUST_NO,CUST_NAME”);
Append(Q,”FROM CUSTOMER”);
Execute(Q,C);

loop
begin

Fetch(Q);
exception

when No_Tuple =>
exit;

end;

for CX in 1..Column_Index_Type(Columns(Q)) loop
Put_Line(“Column Name: “ & Column_Name(Q,CX));

end loop
end loop;
Clear(Q);

3.6.3 Function Column_Index

If you have a column name, but want to know the column index value, then the Col-
umn_Index primitive function can be used. It’s calling requirements are as follows:

Argument in out Type Default Description

1 Query in Query_Type - The SQL query object
2 Name in String - The column name

returns Column_Index_Type The column index

The function may raise the following exceptions:

Exception Name Reason

No_Result There was no execute performed
No_Column Unknown column name

The following rather contrived example shows the Column_Index function used in
the pragma assert statement:

declare
C : Connection_Type;
Q : Query_Type;

begin
Prepare(Q,”SELECT CUST_NO,CUST_NAME”);
Append(Q,”FROM CUSTOMER”);
Execute(Q,C);
while not End_of_Query(Q) loop

Fetch(Q);
for CX in 1..Column_Index_Type(Columns(Q)) loop

declare

78 CHAPTER 3. SQL QUERY SUPPORT

Col_Name : String := Column_Name(Q,CX);
begin

Put_Line(“Column Name: “ & Col_Name);
pragma assert(CX = Column_Index(Col_Name));

end;
end loop;

end loop;
Clear(Q);

3.6.4 Function Column_Type

PostgreSQL Type Information

The Column_Type primitive is the beginning of type information for the column. This
function returns the Row_ID_Type value that describes the type in the pg_type Post-
greSQL table. See the PostgreSQL database documentation for more details.

The Column_Type calling signature is as follows:

Argument in out Type Default Description

1 Query in Query_Type - The SQL query object
2 CX in Column_Index_Type - The column index

returns Row_ID_Type The pg_type Oid value

The function may raise the following exceptions:

Exception Name Reason

No_Result There was no execute performed
No_Column Unknown column name

MySQL Type Information

The field types supported by MySQL are defined by APQ.MySQL.Field_Type. The
programmer may use the Query_Type primitive APQ.MySQL.Client.Column_Type
to determine the column’s type:

Argument in out Type Default Description

1 Query in Query_Type - The SQL query object
2 CX in Column_Index_Type - The column index

returns Field_Type The MySQL field type value

At the writing of this manual, there were the following field types defined for
MySQL:

Field_Type MySQL Datatype

FIELD_TYPE_DECIMAL DECIMAL
FIELD_TYPE_TINY TINYINT | BOOLEAN

FIELD_TYPE_SHORT SMALLINT

3.6. COLUMN INFORMATION FUNCTIONS 79

FIELD_TYPE_LONG INTEGER
FIELD_TYPE_FLOAT FLOAT

FIELD_TYPE_DOUBLE DOUBLE
FIELD_TYPE_NULL BOOLEAN

FIELD_TYPE_TIMESTAMP TIMESTAMP
FIELD_TYPE_LONGLONG BIGINT

FIELD_TYPE_INT24 MEDIUMINT
FIELD_TYPE_DATE DATE
FIELD_TYPE_TIME TIME

FIELD_TYPE_DATETIME DATETIME
FIELD_TYPE_YEAR YEAR

FIELD_TYPE_NEWDATE ?
FIELD_TYPE_ENUM ENUM

FIELD_TYPE_SET SET
FIELD_TYPE_TINY_BLOB TINYTEXT | TINYBLOB

FIELD_TYPE_MEDIUM_BLOB MEDIUMTEXT | MEDIUMBLOB
FIELD_TYPE_LONG_BLOB LONGTEXT | LONGBLOB

FIELD_TYPE_BLOB TEXT | BLOB
FIELD_TYPE_VAR_STRING VARCHAR(N)

FIELD_TYPE_STRING CHAR(N)

APQ does not yet fully support all of MySQL data types.

3.6.5 Is_Null Function

If a column is capable of returning a NULL value, it becomes necessary to test for this.
The Is_Null calling arguments are as follows:

Argument in out Type Default Description

1 Query in Query_Type - The SQL query object
2 CX in Column_Index_Type - The column index

returns Boolean True if column is null

The function may raise the following exceptions:

Exception Name Reason

No_Result There was no execute performed
No_Column Unknown column name

The following example shows how to test if the CUST_NAME column is null or
not:

declare
C : Connection_Type;
Q : Query_Type;

80 CHAPTER 3. SQL QUERY SUPPORT

begin
Prepare(Q,”SELECT CUST_NO,CUST_NAME,BIRTH_DATE”);
Append(Q,”FROM CUSTOMER”);
Execute(Q,C);
loop

begin
Fetch(Q);

exception
when No_Tuple =>

exit;
end;
...
If Is_Null(Q,2) then

-- CUST_NAME value is null
end if;
...

end loop;
Clear(Q);

3.6.6 Column_Is_Null Generic Function

If you need to test for null using strongly typed indicators, you may want to instantiate
the Column_Is_Null generic function. The generic parameters are:

Argument Name Data Type Notes

Ind_Type is new Boolean Any Boolean indicator type

This function is capable of the following exceptions:

Exception Name Reason

No_Result There was no execute performed
No_Column No column at index

The following example illustrates its use:

declare
type Cust_Name_Ind_Type is new Boolean;
function Is_Null is new Column_Is_Null(Cust_Name_Ind_Type);
C : Connection_Type;
Q : Query_Type;
Cust_Name_Ind : Cust_Name_Ind_Type;

begin
Prepare(Q,”SELECT CUST_NO,CUST_NAME”);
Append(Q,”FROM CUSTOMER”);
Execute(Q,C);
loop

begin
Fetch(Q);

exception
when No_Tuple =>

exit;
end;
Cust_Name_Ind := Is_Null(Q,2);

3.7. VALUE FETCHING FUNCTIONS 81

if not Cust_Name_Ind then
-- Get Customer Name (since its not null)

end if;
end loop;
Clear(Q);

3.7 Value Fetching Functions

Once a fetch operation has been performed, the application needs to retrieve the values
for each column from the row. The function primitive Value assumes that the column’s
value is not going to be NULL. If it should be null however, the exception Null_Value
is raised. A better set of primitives should be used for columns that may return NULL.
See section 3.8.

The following subsections will cover the function primitives for extracting the val-
ues for builtin types.

3.7.1 Function Value

The value for a OID, string, bit string or Unbounded_String can be extracted for a
column using the Value function primitive. This function is normally only used for
columns that cannot return a NULL value.16 The calling requirements for these primi-
tives are the same with only the return type varying:

Argument in out Type Default Description

1 Query in Query_Type - The SQL query object
2 CX in Column_Index_Type - The column index

returns Row_ID_Type Row ID value
String String column value

APQ_Bitstring Bit string value
Ada.Strings.Unbounded.

Unbounded_String
String column value

The following exceptions are possible:

Exception Name Reason

No_Result There was no execute performed
No_Column No column at index
Null_Value The column’s value is NULL

The following example shows how all the column values are fetched:

declare
C : Connection_Type;
Q : Query_Type;

begin

16If the value is NULL, the exception Null_Value will be raised.

82 CHAPTER 3. SQL QUERY SUPPORT

Prepare(Q,”SELECT CUST_NO,CUST_NAME”);
Append(Q,”FROM CUSTOMER”);
Execute(Q,C);
loop

begin
Fetch(Q);

exception
when No_Tuple =>

exit;
end;
for CX in 1..Column_Index_Type(Columns(Q)) loop

declare
Col_Value : String := Value(Q,CX);

begin
Put(“Column“);
Put(Column_Index_Type’Image(CX));
Put(“ = ”’);
Put(Value(Q,CX));
Put_Line(“”’);

end;
end loop;

end loop;
Clear(Q);

3.7.2 Null_Oid Function

Since different database engines have different approaches to row ID values17, it is
necessary to know how to represent a null row ID value in the current database context.
Use the Null_Oid primitive to obtain that value:

Argument in out Type Default

1 Query in Query_Type -

returns Row_ID_Type

Using the Null_Oid function in generic database code allows you to eliminate the
test for the database engine being used, when comparing row ID values for null. Even
non generic database code is well advised to use this function.

3.7.3 Generic Value Functions

The Value functions documented in section 3.7.1 were suitable for the specific data
types that they supported. However, Ada programmers often derive distinct new types
to prevent accidental mixing of values in expressions. To accomodate all of these
custom data types, you need to use generic functions for the purpose:

Function Name Data Type Notes

Boolean_Value is new Boolean Any Boolean type
Integer_Value is range <> Any signed integer type

17MySQL for example, does not return row ID values.

3.7. VALUE FETCHING FUNCTIONS 83

Modular_Value is mod <> Any modular type
Float_Value is digits <> Any floating point type
Fixed_Value is delta <> Fixed point types

Decimal_Value is delta <> digits <> Any decimal type
Date_Value is new Ada.Calendar.Time Any date
Time_Value is new Ada.Calendar.Day_Duration Any time

Timestamp_Value is new APQ_Timestamp Time stamps

All of these generic functions accept the same instantiation parameters:

Argument Name Data Type Notes

Val_Type <> Type must correspond to generic function name
Ind_Type is new Boolean Any Boolean indicator type

These functions are capable of the following exceptions:

Exception Name Reason

No_Result There was no execute performed
No_Column No column at index
Null_Value The column’s value is NULL

The following example illustrates the use of the Integer_Value and Date_Value
generic functions:

declare
type Cust_No_Type is new APQ_Integer;
type Cust_Birthday_Type is new APQ_Date;
function Value is new Integer_Value(Cust_No_Type);
function Value is new Date_Value(Cust_Birthday_Type);
C : Connection_Type;
Q : Query_Type;

begin
Prepare(Q,”SELECT CUST_NO,CUST_NAME,BIRTH_DATE”);
Append(Q,”FROM CUSTOMER”);
Execute(Q,C);
loop

begin
Fetch(Q);

exception
when No_Tuple =>

exit;
end;
declare

Cust_Name : String := Value(Q,2); -- Col 2
Cust_No : Cust_No_Type;
Birthday : Cust_Birthday_Type;

begin
Cust_No := Value(Q,1); -- CUST_NO is col 1
Birthday := Value(Q,3); -- BIRTH_DATE is col 3
...

84 CHAPTER 3. SQL QUERY SUPPORT

end;
end loop;
Clear(Q);

In the example shown, Cust_Name is returned by the builtin function Value for String
types. The variables Cust_No and Birthday are assigned through the generic instantia-
tions of the functions Integer_Value and Date_Value respectively.

3.7.4 Fixed Length String Value Procedure

Sometimes in an application it is desireable to work with fixed length string values.
The following Value procedure does just this:

Argument in out Type Default Description

1 Query in Query_Type - The SQL query object
2 CX in Column_Index_Type - The column index
3 V out String - The string receiving the value

The function may raise the following exceptions:

Exception Name Reason

No_Result There was no execute performed
No_Column No column at index
Null_Value The column’s value is null

The following example extracts the CUST_NAME column result into variable
Cust_Name as a 30 byte string value:

declare
C : Connection_Type;
Q : Query_Type;
Cust_Name : String(1..30);

begin
Prepare(Q,”SELECT CUST_NO,CUST_NAME”);
Append(Q,”FROM CUSTOMER”);
Execute(Q,C);
loop

begin
Fetch(Q);

exception
when No_Tuple =>

exit;
end;
...
Value(Q,2,Cust_Name);
...

end loop;
Clear(Q);

3.7. VALUE FETCHING FUNCTIONS 85

3.7.5 APQ_Timezone Value Procedure

A TIMESTAMP value that carries with it a time zone value, requires a special proce-
dure since two values must be extracted for the same column:

� The Ada.Calendar.Time18 value holding the TIMESTAMP value

� The APQ_Timezone value holding the time zone offset

The generic procedure requires the following type arguments:

Argument Name Data Type Notes

Date_Type is new Ada.Calendar.Time Any Ada.Calendar.Time derived type
Zone_Type is new APQ_Timezone Any APQ_Timezone derived type

The signature of the instantiated procedure is as follows:

Argument in out Type Default Description

1 Query in Query_Type - The SQL query object
2 CX in Column_Index_Type - The column index
3 TS out APQ_Timestamp - The extracted TIMESTAMP value
4 TZ out APQ_Timezone - The extracted time zone offset value

The function may raise the following exceptions:

Exception Name Reason

No_Result There was no execute performed
No_Column No column at index
Null_Value The column’s value is null

The following example shows how the procedure can be used:

declare
procedure Value is new Timezone_Value(APQ_Timestamp,APQ_Timezone);
C : Connection_Type;
Q : Query_Type;
Birth_Date : APQ_Timestamp;
Birth_Zone : APQ_Timezone;

begin
Prepare(Q,”SELECT CUST_NO,CUST_NAME,BIRTH_DATE”);
Append(Q,”FROM CUSTOMER”);
Execute(Q,C);
loop

begin
Fetch(Q);

exception
when No_Tuple =>

exit;

18From which APQ_Timestamp is derived.

86 CHAPTER 3. SQL QUERY SUPPORT

end;
...
Value(Q,3,Birth_Date,Birth_Zone); -- Column BIRTH_DATE
...
end loop;

end loop;
Clear(Q);

In this example code fragment, the Value procedure call expects the column’s value to
be column 3 (argument CX). This works as long as column BIRTH_DATE can never
be null. If a NULL value is encountered in this program, the exception Null_Value will
be raised and not caught by the code in this example.19

3.7.6 Bounded_Value Function

Bounded strings require a separate instantiation of Ada.Strings.Bounded for each string
length. For this reason, a function supporting bounded strings must be provided in
generic form. The Bounded_Value generic function accepts the following generic
arguments:

Argument Name Data Type Notes

P
is new Ada.Strings.Bounded.

Generic_Bounded_Length(<>)
Any bounded string instantiation

The resulting instantiated function has the following calling signature:

Argument in out Type Default Description

1 Query in Query_Type - The SQL query object
2 CX in Column_Index_Type - The column index

returns P.Bounded_String - The bounded string value

The function may raise the following exceptions:

Exception Name Reason

No_Result There was no execute performed
No_Column No column at index
Null_Value The column’s value is null

The following example illustrates the use of Bounded_Value:

with Ada.Strings.Bounded;
declare

package B30 is new Ada.Strings.Bounded.Generic_Bounded_Length(30);
function Value is new Bounded_Value(B30);
C : Connection_Type;

19Either an exception handler must be added or a different way of extracting the value must be used.
Fetch_Timezone is recommended if NULL is possible.

3.8. VALUE AND INDICATOR FETCH PROCEDURES 87

Q : Query_Type;
Cust_Name : B30;

begin
Prepare(Q,”SELECT CUST_NO,CUST_NAME,BIRTH_DATE”);
Append(Q,”FROM CUSTOMER”);
Execute(Q,C);
loop

begin
Fetch(Q);

exception
when No_Tuple =>

end;
...
Cust_Name := Value(Q,2);
...
end loop;

end loop;
Clear(Q);

3.8 Value and Indicator Fetch Procedures

The Value functions presented in section 3.7 were useful when the returned value was
always going to be present. However, their use becomes clumsy and less efficient if
exception handlers must be used to handle the NULL value case. This section docu-
ments Fetch procedures to return both a value and a null indicator together. With this
convenience comes the added responsibility of checking the null indicator values, that
are returned.

3.8.1 Char and Unbounded Fetch

The Char_Fetch and Unbounded_Fetch generic procedures fetch both a string value
and an indicator value. In the Char_Fetch case, the returned value is blank filled to the
full size of the receiving String buffer. Each of these has the following instantiation
parameters:

Argument Name Data Type Notes

Ind_Type is new Boolean Any Boolean derived null indicator type

The resulting instantiated procedure has the following calling signature:

Argument in out Type Default Description

1 Query in Query_Type - The SQL query object
2 CX in Column_Index_Type - The column index

3 V out
String

Ada.Strings.Unbounded.
Unbounded_String

- String Value

4 Indicator out Ind_Type - Indicator Value

88 CHAPTER 3. SQL QUERY SUPPORT

The instantiated procedure may raise the following exceptions:

Exception Name Reason

No_Result There was no execute performed
No_Column No column at index

The following example illustrates two different column fetch applications:

with Ada.Strings.Unbounded;
declare

type Cust_Name_Ind_Type is new Boolean;
type Cust_City_Ind_Type is new Boolean;
subtype Cust_Name_Type is String(1..30);
subtype Cust_City_Type is Ada.Strings.Unbounded.Unbounded_String;
procedure Value is new Char_Fetch(Cust_Name_Ind_Type);
procedure Value is new Unbounded_Fetch(Cust_City_Ind_Type);
C : Connection_Type;
Q : Query_Type;
Cust_Name : Cust_Name_Type;
Cust_Name_Ind : Cust_Name_Ind_Type;
Cust_City : Cust_City_Type;
Cust_City_Ind : Cust_City_Ind_Type;

begin
Prepare(Q,”SELECT CUST_NO,CUST_NAME,CITY”);
Append(Q,”FROM CUSTOMER”);
Execute(Q,C);
loop

begin
Fetch(Q);

exception
when No_Tuple =>

end;
...
Value(Q,2,Cust_Name,Cust_Name_Ind);
Value(Q,3,Cust_City,Cust_City_Ind);
...

end loop;
Clear(Q);

3.8.2 Varchar_Fetch and Bitstring_Fetch Procedures

To return a varying length string requires the use of a function. However, to return
two values, we must resort to a procedure call for the purpose. In order to return both
a varying length string and a null indicator, an additional return value is returned that
indicates the length of the string. To accomodate strongly typed indicators, these two
procedures are provided in generic form. The instantiation parameters are:

Argument Name Data Type Notes

Ind_Type is new Boolean Any Boolean derived null indicator type

The resulting instantiated procedure has the following calling signature:

3.8. VALUE AND INDICATOR FETCH PROCEDURES 89

Argument in out Type Default Description

1 Query in Query_Type - The SQL query object
2 CX in Column_Index_Type - The column index

3 V out
String

APQ_Bitstring
- Receiving string buffer

4 Last out Natural - Length of returned string
5 Indicator out Ind_Type - Indicator Value

The instantiated procedure may raise the following exceptions:

Exception Name Reason

No_Result There was no execute performed
No_Column No column at index

The following example illustrates two different column fetch applications:

declare
type Cust_Name_Ind_Type is new Boolean;
type Cust_City_Ind_Type is new Boolean;
procedure Value is new Varchar_Fetch(Cust_Name_Ind_Type);
procedure Value is new Varchar_Fetch(Cust_City_Ind_Type);
C : Connection_Type;
Q : Query_Type;
Cust_Name : String(1..30); -- Cust_Name(1..Cust_Name_Last)
Cust_Name_Last : Natural;
Cust_Name_Ind : Cust_Name_Ind_Type;
Cust_City : String(1..40); -- Cust_City(1..Cust_City_Last)
Cust_City_Last : Natural;
Cust_City_Ind : Cust_City_Ind_Type;

begin
Prepare(Q,”SELECT CUST_NO,CUST_NAME,CITY”);
Append(Q,”FROM CUSTOMER”);
Execute(Q,C);
loop

begin
Fetch(Q);

exception
when No_Tuple =>

exit;
end;
...
Value(Q,2,Cust_Name,Cust_Name_Last,Cust_Name_Ind);
Value(Q,3,Cust_City,Cust_City_Last,Cust_City_Ind);
...

end loop;
Clear(Q);

After the first Value call in the example, the customer name would be represented by
the expression:

Cust_Name(1..Cust_Name_Last)

provided that the value Cust_Name_Ind was false.

90 CHAPTER 3. SQL QUERY SUPPORT

3.8.3 Bounded_Fetch Procedure

To fetch both a Bounded_String value and its associated null indicator, you instantiate
and call the Bounded_Fetch. The instantiation parameters are as follows:

Argument Name Data Type Notes

Ind_Type is new Boolean Null indicator type
P Ada.Strings.Bounded.Generic_Bounded_Length(<>) Instantiation

The resulting instantiated procedure has the following calling signature:

Argument in out Type Default Description

1 Query in Query_Type - The SQL query object
2 CX in Column_Index_Type - The column index
3 V out P.Bounded_String - Receiving Value
4 Indicator out Ind_Type - Indicator Value

The instantiated procedure may raise the following exceptions:

Exception Name Reason

No_Result There was no execute performed
No_Column No column at index

The following example illustrates a fetch instantiation and call:

with Ada.Strings.Bounded;
declare

package B32 is new Ada.Strings.Bounded.Generic_Bounded_Length(32);
type Cust_Name_Ind_Type is new Boolean;
procedure Value is new Bounded_Fetch(Cust_Name_Ind_Type,B32);
C : Connection_Type;
Q : Query_Type;
Cust_Name : B32;
Cust_Name_Ind : Cust_Name_Ind_Type;

begin
Prepare(Q,”SELECT CUST_NO,CUST_NAME”);
Append(Q,”FROM CUSTOMER”);
Execute(Q,C);
loop

begin
Fetch(Q);

exception
when No_Tuple =>

exit;
end;
...
Value(Q,2,Cust_Name,Cust_Name_Ind);
...

end loop;
Clear(Q);

3.8. VALUE AND INDICATOR FETCH PROCEDURES 91

3.8.4 Discrete Type Fetch Procedures

Several of the discrete types can be grouped and documented in this section. The
following table indicates the generic procedure names and their associated class of
data type for which they are designed:

Function Name Data Type Notes

Boolean_Fetch is new Boolean Any Boolean type
Integer_Fetch is range <> Any signed integer type

Modular_Fetch is mod <> Any modular type
Float_Fetch is digits <> Any floating point type
Fixed_Fetch is delta <> Fixed point types

Decimal_Fetch is delta <> digits <> Any decimal type
Date_Fetch is new Ada.Calendar.Time Any date
Time_Fetch is new Ada.Calendar.Day_Duration Any time

Timestamp_Fetch is new APQ_Timestamp Time stamps

Each of these generic procedures require the following generic parameters:

Argument Name Data Type Notes

Ind_Type is new Boolean Null indicator type

The resulting instantiated procedure has the following calling signature:

Argument in out Type Default Description

1 Query in Query_Type - The SQL query object
2 CX in Column_Index_Type - The column index
3 V out <> - Type according to type class
4 Indicator out Ind_Type - Indicator Value

The instantiated procedure may raise the following exceptions:

Exception Name Reason

No_Result There was no execute performed
No_Column No column at index

The following example illustrates how to instantiate and call a Integer_Fetch pro-
cedure.

declare
type Cust_No_Type is new Integer;
type Cust_No_Ind_Type is new Boolean;
procedure Value is new Integer_Fetch(Cust_No_Type,Cust_No_Ind_Type);
C : Connection_Type;
Q : Query_Type;
Cust_No : Cust_No_Type;
Cust_No_Ind : Cust_No_Ind_Type;

92 CHAPTER 3. SQL QUERY SUPPORT

begin
Prepare(Q,”SELECT CUST_NO,CUST_NAME”);
Append(Q,”FROM CUSTOMER”);
Execute(Q,C);
loop

begin
Fetch(Q);

exception
when No_Tuple =>

exit;
end;
...
Value(Q,1,Cust_No,Cust_No_Ind);
...

end loop;
Clear(Q);

3.8.5 Timezone_Fetch Procedure

The Timezone_Fetch generic procedure is unique because it returns an additional pa-
rameter: the timezone. The procedure’s instantiation parameters are listed below:

Argument Name Data Type Notes

Date_Type is new Ada.Calendar.Time The returned timestamp type
Zone_Type is new APQ_Timezone The returned timezone type
Int_Type is new Boolean The returned NULL indicator type

The resulting instantiated procedure has the following calling signature:

Argument in out Type Default Description

1 Query in Query_Type - The SQL query object
2 CX in Column_Index_Type - The column index
3 V out Date_Type - Returned timestamp info
4 Z out Zone_Type - Returned timezone info
5 Indicator out Ind_Type - Indicator Value

The instantiated procedure may raise the following exceptions:

Exception Name Reason

No_Result There was no execute performed
No_Column No column at index

The following example illustrates how to instantiate and call a Timezone_Fetch
procedure.

declare
type Bday_Type is new Integer;
type Bday_Zone_Type is new APQ_Timezone;
type Bday_Ind_Type is new Boolean;

3.9. INFORMATION FUNCTIONS 93

procedure Value is new
Timezone_Fetch(Bday_Type,Bday_Zone_Type,Bday_Ind_Type);

C : Connection_Type;
Q : Query_Type;
Bday : Bday_Type;
Bday_Zone : Bday_Zone_Type;
Bday_Ind : Bday_Ind_Type;

begin
Prepare(Q,”SELECT CUST_NO,CUST_NAME,BIRTH_DATE”);
Append(Q,”FROM CUSTOMER”);
Execute(Q,C);
loop

begin
Fetch(Q);

exception
when No_Tuple =>

exit;
end;
...
Value(Q,3,Bday,Bday_Zone,Bday_Ind);
...

end loop;
Clear(Q);

3.9 Information Functions

You have already seen two information functions Result and Error_Message in section
3.3.1 and 3.3.5. Another useful Query_Type primitive is the To_String function. It is
described in the next subsection.

3.9.1 The To_String Function

The To_String primitive allows the caller to retrieve the collected SQL text from the
Query_Type object. The function’s calling signature is as follows:

Argument in out Type Default Description

1 Query in Query_Type - The SQL query object
returns String String form of the entire query

The To_String function returns the full text of the SQL query, including newline
characters.20 If there has not been any SQL text collected, the function returns an
empty string.21

The following example shows how a programmer can dump out the SQL query, but
only when it fails:

declare
C : Connection_Type;
Q : Query_Type;

20One is included at the end of the string if it is missing.
21In this case, no newline is provided.

94 CHAPTER 3. SQL QUERY SUPPORT

begin
Prepare(Q,”SELECT CUST_NO,CUST_NAME,BIRTH_DATE”);
Append(Q,”FROM CUSTOMER”);
begin

Execute(Q,C);
exception

when SQL_Error =>
Put_Line(“The failed SQL Query was:“);
Put_Line(To_String(Q));
raise;

when others =>
raise;

end;

Chapter 4

Blob Support

The MySQL database provides a very different type of blob support. One that the
author feels is somewhat inferior to the PostgreSQL functionality. However, this is
an area for further study as far as APQ is concerned. For APQ 2.0, MySQL does not
support blobs.

The PostgreSQL database however, like many others, provides the application pro-
grammer with the ability to store large amounts of information in a “blob”. In many
ways this resembles a file, with the exception that the contents are stored in the database
and is accessed by number (OID). The APQ binding provides full PostgreSQL blob
support for the Ada programmer. In addition, the Ada stream concept is employed to
provide reliable and convenient access to the blob.

Endian Note:

The application programmer must keep in mind that any binary data written to a blob,
by means of the Ada stream, is not endian neutral. This becomes a concern when a
client application accesses or writes to blobs stored on a database over the network, on
another host.

4.1 Introduction

Blob functions are managed primarily through the Blob_Type access type.1 Stream I/O
to and from the blob is performed using an Ada streams access value.2

The blob support can generally be grouped into the following categories:

� Create, Open and Close operations

� Index setting and querying operations

1The object itself is of type Blob_Object. Blob_Type is an access to Blob_Object type.
2Internally named Root_Stream_Access type, which is the type ”access all

Ada.Streams.Root_Stream_Type’Class”.

95

96 CHAPTER 4. BLOB SUPPORT

� Information operations for Size and OID

� Stream accessor function

� Blob destruction

� File and Blob operations

The following sections will document the blob support using these groupings.

4.2 Blob Memory Leak Prevention

It is extremely important that the programmer realize that the Blob_Type data type is
an access type.3 Additionally this access value is a pointer to a dynamically allocated
tagged record (type Blob_Object). For this reason, the programmer must take great
care to “close” the Blob_Type before discarding the Blob_Type value, when it goes
out of scope. Failure to close a Blob_Type value, will result in a memory leak and
cause subsequent database performance issues. Use the Blob_Type value as if it were
an open file that needs closing.

The following example represents a “Blob_Type leak”:

declare
C : aliased Connection_Type;
B : Blob_Type;

begin
...
B := Blob_Create(C’Access);
...

end;

The example above is bad because a “blob leak” occurs when the “end” statement is
reached.4 The variable C finalizes itself OK because it is a controled object.5 However,
B is an access type, pointing to a Blob_Object record. When variable B falls out of
scope, only the pointer value in B is lost. The object it pointed to has not been released!

The following example code is better:

declare
C : aliased Connection_Type;
B : Blob_Type;

begin
...
B := Blob_Create(C’Access);
...
Blob_Close(B);

end;

3This design choice was necessary to accomodate Ada stream oriented I/O.
4It should also be noted that after creating a blob in the database, the application must save the OID value

for the blob somewhere. Otherwise, you will have a blob in the database that will never be accessed!
5Both Connection_Type and Query_Type objects are controlled records with finalization.

4.3. CREATE, OPEN AND CLOSE OF BLOBS 97

The call to Blob_Close insures that the memory associated with the opened blob is
released, before the value B falls out of scope.6 However, if there is a chance that an
exception may be raised, you may still be vulnerable to leaks. The following example
covers all of the bases:

declare
C : aliased Connection_Type;
B : Blob_Type;

begin
...
B := Blob_Create(C’Access);
...
Blob_Close(B);

exception
when others =>

if B /= null then
Blob_Close(B);

end if;
...recovery steps...

end;

While the recovery steps have been left to the reader’s imagination in the example
above, the exception is caught and the value for variable B is tested. Only if B is
not null, should the Blob_Close procedure call made. Using these principles, you can
prevent blob memory leaks.

4.3 Create, Open and Close of Blobs

The most basic operations possible in an Ada program using blobs are:

� Creating a new blob in the database (Blob_Create)

� Opening an existing blob in the database (Blob_Open)

� Flushing buffered writes to the database (Blob_Flush)

� Closing a blob (Blob_Close)

The following subsections will explain how to perform these operations in detail.

4.3.1 Blob_Create Procedure

Before the application can open an existing blob, there must be some way to create a
blob. The Blob_Create function does just this with the following calling signature: Note: Blob operations must be

performed within the context of
a transaction.# Argument in out Type Default

1 DB access Connection_Type -
2 Buf_Size in Natural Buf_Size_Default

returns Blob_Type

6Note that Close does not destroy the blob in the database.

98 CHAPTER 4. BLOB SUPPORT

The returned value is a Blob_Type that is capable of being used to read and/or write
a blob. The blob is positioned at index position 1 (the beginning). See section 4.6.2 for
information about how to determine the created blob’s OID.

Starting with APQ version 1.2, all blob I/O is buffered if the Buf_Size argument is
supplied with a value greater than zero, or is not supplied such that the default value
applies. The following table summarizes the Buf_Size argument behaviour:

Buf_Size Value Description Performance

0 Unbuffered blob I/O Very poor
0 < Buf_Size < 1024 Buffered Poor

1024 <= Buf_Size < Buf_Size_Default Buffered blob I/O Better
Buf_Size_Default Buffered: 5120 bytes Very good

The following exceptions are possible:

Exception Name Reason

Blob_Error There was no blob created

Possible reasons for a Blob_Error exception to be raised would include:

� bad database connection object7

� a database error occurred (no more blob space?)

The following example shows how a new blob can be created:

declare
C : aliased Connection_Type;
B : Blob_Type;

begin
...
B := Blob_Create(C’Access);
...
Blob_Close(B);

end;

Note:

The argument DB in the call to the Blob_Create, is an access to Connection_Type ar-
gument. You must guarantee that the Connection_Type object does not finalize before
the created blob has been closed.

4.3.2 Blob_Open Function

To open an existing blob, you must know the OID of the blob in the database. This is
normally a value that is stored in a database column somewhere. See section 4.6.2 for
information on how to determine the OID of a created blob.Note: Blob operations must be

performed within the context of
a transaction.

7Or the database connection object went out of scope.

4.3. CREATE, OPEN AND CLOSE OF BLOBS 99

Blobs can be opened for various types of access:

Read for readonly access to the blob contents

Write for writing to the blob

Read_Write for both reading and writing of the blob

The Blob_Open function has the following calling signature:

Argument in out Type Default

1 DB access Connection_Type -
2 Oid in Row_ID_Type -
3 Mode in Mode_Type -
4 Buf_Size in Natural Buf_Size_Default

returns Blob_Type

The returned value is a Blob_Type that is accessable according to the Mode se-
lected. The blob is positioned at index value 1 (the beginning).

Starting with APQ version 1.2, all blob I/O is buffered if the Buf_Size argument is
supplied with a value greater than zero, or is not supplied such that the default value
applies. The following table summarizes the Buf_Size argument behaviour:

Buf_Size Value Description Performance

0 Unbuffered blob I/O Very poor
0 < Buf_Size < 1024 Buffered Poor

1024 <= Buf_Size < Buf_Size_Default Buffered blob I/O Better
Buf_Size_Default Buffered: 5120 bytes Very good

The following exceptions are possible:

Exception Name Reason

Blob_Error There was no blob opened

Possible reasons for a Blob_Error exception to be raised would include:

� bad database connection object

� the Oid value supplied is not known by the database

� a database error occurred

The following example shows how blob 73763 can be opened for reading:

declare
C : aliased Connection_Type;
B : Blob_Type;

100 CHAPTER 4. BLOB SUPPORT

OID : Row_ID_Type := 73763;
begin

...
B := Blob_Open(C’Access,OID,Read);
...
Blob_Close(B);

exception
when others =>

if B /= null then
Blob_Close(B);

end if;
raise;

end;

Note:

The argument DB in the call to the Blob_Open, is an access to Connection_Type ar-
gument. You must guarantee that the Connection_Type object does not finalize before
the opened blob has been closed.

Generic_Blob_Open Function

To allow the application programmer to use strong types in place of the supplied
Row_ID_Type type, a generic procedure for opening blobs is also provided. The
instantiated function behaves exactly as described for Blob_Open on page 98. The
instantiation arguments for Generic_Blob_Open are:

Argument Type Description

1 Oid_Type is new Row_ID_Type The Specialized Oid type to use

The following example shows how to instantiate the function:

declare
type My_Oid_Type is new Row_ID_Type;
function Blob_Open is new Generic_Blob_Open(My_Oid_Type);

4.3.3 Blob_Flush Procedure

When you are using buffered blob I/O8 and your application has performed one or more
writes to the blob, you may need to be certain that all of the buffered data is physically
written out to the database. For example, you may have a timing opportunity to perform
this expensive operation while the user is waiting for something else to occur. Buffer
flushes are automatically performed when the blob is closed or due to changes made
by the Blob_Set_Index operation. To give the application programmer control over the
timing of the physical write to the database, the Blob_Flush procedure can be used.Blob_Flush calls are ignored

when unbuffered blob I/O is
being used. This makes it
easy for the application to
choose buffered or unbuffered
operation without source code
changes.

The Blob_Flush procedure has the following calling signature:

8Buffered blob I/O is the default for performance reasons.

4.4. INDEX SETTING OPERATIONS 101

Argument in out Type Default

1 Blob in out Blob_Type -

The following exceptions are possible:

Exception Name Reason

Blob_Error The blob is not open

4.3.4 Blob_Close Procedure

When the programmer no longer requires access to a open/created blob, the proce-
dure Blob_Close should be called. Since an open blob depends upon a hidden ac-
cess value that points back to the Connection_Type object, the programmer should call
Blob_Close as soon as is practical. This reduces the possibility of error that will occur
if the Connection_Type object is finalized too soon.

The Blob_Close procedure has the following calling signature:

Argument in out Type Default

1 Blob in out Blob_Type -

The following exceptions are possible:

Exception Name Reason

Blob_Error The blob is not open

Normally the Blob_Error exception will indicate an attempt to close a blob that is
not open. However, it is possible that the database engine may experience a problem
that will raise the same exception.

The procedure Blob_Close will also null out the the Blob_Type value that was
passed in. This is done to eliminate any accidental access to a Blob_Object that no
longer exists.

4.4 Index Setting Operations

Like a file, a blob’s “position” can be changed and queried. The index operations
require the use of two types defined for the purpose. They are:

type Blob_Count is new Ada.Streams.Stream_Element_Offset
range 0..Ada.Streams.Stream_Element_Offset’Last;

subtype Blob_Offset is Blob_Count range 1..Blob_Count’Last;

The type Blob_Count is used where there is a count involved (which may require the
value zero). The type Blob_Offset is used whenever a blob offset is used, since it starts
at the value 1.

102 CHAPTER 4. BLOB SUPPORT

The next subsections describe facilities for performing blob indexing operations.

4.4.1 Blob_Set_Index Procedure

The Blob_Set_Index procedure is used when the caller needs to seek to a new position
within the opened blob. See section 4.6.1 if you need to know the size of the blob.

The calling requirements for Blob_Set_Index are summarized in the following ta-
ble:

Argument in out Type Default

1 Blob in Blob_Type -
2 To in Blob_Offset -

The following exceptions are possible:

Exception Name Reason

Blob_Error Not open or seek failed

The following example shows how to seek to the end of the blob:

declare
C : aliased Connection_Type;
B : Blob_Type;
B_Size : Blob_Count;
End_Blob : Blob_Index;

begin
...
B_Size := Blob_Size(B);
if B_Size > 0 then

End_Blob := B_Size;
Blob_Set_Index(B,End_Blob);

...

4.5 Blob_Index Function

Applications sometimes need to query where they are positioned in the blob. The
Blob_Index function returns the current Blob_Offset position information. The calling
requirements are as follows:

Argument in out Type Default

1 Blob in Blob_Type -
returns Blob_Offset

The following exceptions are possible:

4.6. INFORMATION FUNCTIONS 103

Exception Name Reason

Blob_Error Not open

The following example code determines where in the presently opened blob the
blob position index is:

declare
C : aliased Connection_Type;
B : Blob_Type;
Pos_Blob : Blob_Index;

begin
...
Pos_Blob := Blob_Index(B);

4.6 Information Functions

The following subsections describe information gathering functions. They provide the
programmer a way to obtain size and identification information.

4.6.1 Blob Size Function

To determine the present size of a blob, the Blob_Size function can be used. It’s calling
signature is as follows:

Argument in out Type Default

1 Blob in Blob_Type -
returns Blob_Count

The following exceptions are possible:

Exception Name Reason

Blob_Error Not open

Notice that the return type Blob_Count does permit the value zero to be returned
(blob is empty).

The following example code determines the size of the presently opened blob:

declare
C : aliased Connection_Type;
B : Blob_Type;
Blob_Size : Blob_Count;

begin
...
Blob_Size := Blob_Size(B);

104 CHAPTER 4. BLOB SUPPORT

4.6.2 Blob_OID Function

After a blob is created, it is very necessary to determine the OID for the blob. The
Blob_Oid function may be called after Blob_Create or Blob_Open to obtain OID in-
formation. The calling requirements are as follows:

Argument in out Type Default

1 Blob in Blob_Type -
returns Row_ID_Type

The following exceptions are possible:

Exception Name Reason

Blob_Error Not open

The following example code determines the OID value for the newly created blob:

declare
C : aliased Connection_Type;
B : Blob_Type;
Blob_OID : Row_ID_Type;

begin
...
B := Blob_Create(C’Access);
Blob_OID := Blob_Oid(B);

Generic_Blob_Oid Function

To use a strongly typed version of the Blob_Oid function, the application program-
mer can instantiate from Generic_Blob_Oid. The instantiated function otherwise be-
haves exactly as the Blob_Oid function on page 104. The instantiation parameters for
Generic_Blob_Oid are:

Argument Type Description

1 Oid_Type is new Row_ID_Type The Specialized Oid type to use

The following example shows how to instantiate the function:

declare
type My_Oid_Type is new Row_ID_Type;
function Blob_Oid is new Generic_Blob_Oid(My_Oid_Type);

4.6.3 End_Of_Blob Function

The End_Of_Blob function can be used by programs that sequentially read through a
blob. The calling signature for this function is given below:Note that this function re-

sults in poor performance if
the buffer size is set to zero
(unbuffered) in the opening
Blob_Open/Blob_Create calls.

Argument in out Type Default

4.7. STREAM ACCESS 105

1 Blob in Blob_Type -
returns Boolean

The return value is True if the current position in the blob is at the end of the blob.
Otherwise the value False is returned.

The following exceptions are possible:

Exception Name Reason

Blob_Error Not open

The following example code reads a series of strings from the blob, using the
End_Of_Blob function:

declare
C : aliased Connection_Type;
B : Blob_Type;

begin
...
B := Blob_Open(...);
declare

S : Root_Stream_Access := Blob_Stream(B);
begin

while not End_Of_Blob(B) loop
declare

Line : String := String’Input(S);
begin

Put_Line(Line);
end;

end loop;
end;
Blob_Close(B);

4.7 Stream Access

In order for an Ada program to perform stream I/O on a blob, you must obtain a useable
stream pointer. The APQ binding defines a type named Root_Stream_Access for this
purpose. It is defined as follows:

type Root_Stream_Access is access all Ada.Streams.Root_Stream_Type’Class;

The function Blob_Stream returns this stream pointer to the caller. Use of this returned
pointer makes it possible to use the native Ada stream I/O facilities. The function
Blob_Stream is outlined in the following table:

Argument in out Type Default

1 Blob in Blob_Type -
returns Root_Stream_Access

106 CHAPTER 4. BLOB SUPPORT

The following exceptions are possible:

Exception Name Reason

Blob_Error Not open

The following example shows how a blob is created, a stream access value is ob-
tained, and a APQ_Timestamp value is written to the new blob:

declare
C : aliased Connection_Type;
B : Blob_Type;
Str : Root_Stream_Access;
Some_Date : APQ_Timestamp;

begin
...
B := Blob_Create(C’Access);
declare

Str : Root_Stream_Access := Blob_Stream(B);
begin

APQ_Timestamp’Write(Str,Some_Date);
...

end;
Blob_Close(B);

end;

Notice in this example, that the declaration and the existance of the stream pointer Str
was restricted as much as possible. While not strictly necessary, there are good reasons
for following this practice. See the special following note for the details.

Note:

The programmer does not have to worry about “closing” or freeing the returned stream
pointer (Str in the example). It can be nulled or left to fall out of scope. Only the type
Blob_Type must be “closed” by calling Blob_Close.

The programmer must however be careful to never use the stream pointer after the
blob has been closed, or after the connection object has been closed or finalized. The
stream pointer should be nulled when it has outlived its usefulness, or allowed to fall
out of scope.

4.8 Blob Destruction

To release a blob, you must use the Blob_Unlink procedure call. The calling arguments
are summarized in the following table:

Argument in out Type Default

1 DB in Connection_Type -
2 Oid in Row_ID_Type -

4.9. FILE AND BLOB OPERATIONS 107

The following exceptions are possible:

Exception Name Reason

Blob_Error No such Oid

The following code releases the blob referenced in the example on page 100.

declare
C : aliased Connection_Type;
Oid : Row_ID_Type := 73763;

begin
...
Blob_Unlink(C,Oid); -- Destroy blob 73763

Generic_Blob_Unlink Procedure

To use a strongly typed version of the Blob_Unlink procedure, the application pro-
grammer can instantiate from Generic_Blob_Unlink. The instantiated function other-
wise behaves exactly as the Blob_Unlink function. The instantiation parameters for
Generic_Blob_Unlink are:

Argument Type Description

1 Oid_Type is new Row_ID_Type The Specialized Oid type to use

The following example shows how to instantiate the function:

declare
type My_Oid_Type is new Row_ID_Type;
procedure Blob_Unlink is new Generic_Blob_Unlink(My_Oid_Type);

4.9 File and Blob Operations

Blobs are very similar to files. It should be no surprise then that sometimes a file is
imported into a blob, or exported from a blob.

A file is imported into a blob with the Blob_Import call:

Argument in out Type Default

1 DB in Connection_Type -
2 Pathname in String -
3 Oid out Row_ID_Type -

Blob_Import returns the Oid of the newly created blob, that now contains a copy of
the file specified by the Pathname argument.

A blob’s contents can be written out (exported) to a file with a call to Blob_Export:

Argument in out Type Default

108 CHAPTER 4. BLOB SUPPORT

1 DB in Connection_Type -
2 Oid in Row_ID_Type -
3 Pathname in String -

After a successful return from Blob_Export, the file named by the Pathname argu-
ment, contains a copy of the specified blob.

If any error in these import/export operations occur, the following exception is
raised:

Exception Name Reason

Blob_Error Import/export failed

Note that Blob_Import creates a new blob if necessary. Blob_Export creates a new
file if necessary.

Generic_Blob_Import and Generic_Blob_Export Procedures

To use strongly typed versions of the Blob_Import and Blob_Export, the application
programmer can instantiate from Generic_Blob_Import and Generic_Blob_Export re-
spectively. The instantiated procedure otherwise behaves exactly as the Blob_Import
or Blob_Export function. The instantiation parameters for Generic_Blob_Import or
Generic_Blob_Export are:

Argument Type Description

1 Oid_Type is new Row_ID_Type The Specialized Oid type to use

The following example shows how to instantiate the function:

declare
type My_Oid_Type is new Row_ID_Type;
procedure Blob_Import is new Generic_Blob_Import(My_Oid_Type);

Chapter 5

Utility Functions

5.1 To_String Support

To ease the job for the application developer, a number of builtin To_String functions
are provided to allow conversion from the data type to its string representation. The
following To_String functions are available with the following builtin types (only one
function requires a second argument):

Argument 1 (V) Argument 2 (TZ)

APQ_Boolean
APQ_Date
APQ_Time

APQ_Timestamp
APQ_Timestamp APQ_Timezone
APQ_Bitstring
APQ_Timezone

The following illustrates one example:

declare
Ship_Date : APQ_Date;

begin
Put(“Shipped on: “);
Put_Line(To_String(Ship_Date));

5.2 Generic To_String Support

Programs that make use of distinct types will require the use of generic functions to
perform To_String conversions. The following generic functions are available for in-
stantiation:

Name Argument Parameter Type

109

110 CHAPTER 5. UTILITY FUNCTIONS

Boolean_String Val_Type is new Boolean
Integer_String Val_Type is new range <>

Modular_String Val_Type is new mod <>
Fixed_String Val_Type is new delta <>
Float_String Val_Type is new digits <>

Decimal_String Val_Type is new delta <> digits <>
Date_String Val_Type is new Ada.Calendar.Time
Time_String Val_Type is new Ada.Calendar.Day_Duration

Timestamp_String Val_Type is new Ada.Calendar.Time
Timezone_String Val_Type is new APQ_Timezone

The instantiated function has the following calling signature:

Argument in out Type Default Description

1 V in Val_Type - The value to convert
returns String String result

The following example illustrates their use:

declare
type My_Date_Type is new APQ_Timestamp;
function To_String is new Timestamp_String(My_Date_Type);
Execution_Date : My_Date_Type;

begin
...
Put(“Program Execution Date: “);
Put_Line(To_String(Execution_Date));

5.3 Conversion Generic Functions

Sometimes a programmer must convert from a text format string into another data type
for manipulation. Several generic functions are provided for the purpose:

Generic Name Argument (S) Parameter Type

Convert_To_Boolean String is new Boolean
Convert_To_Date String is new Ada.Calendar.Time
Convert_To_Time String is new Ada.Calendar.Day_Duration

Convert_To_Timestamp String is new Ada.Calendar.Time

These generic functions take one generic parameter Val_Type, representing the re-
turn type. The Val_Type must derive as the table above indicates. The instantiated
function takes the following form:

Argument in out Type Default Description

1 S in String - The value to convert

5.4. THE CONVERT_DATE_AND_TIME GENERIC FUNCTION 111

returns Val_Type The conversion result

The following exceptions are possible:

Exception Name Reason

Invalid_Format The input value was not a proper value for the type

The following example illustrates some converions:

declare
type Bool is new APQ_Boolean;
type Birth_Date_Type is new APQ_Date;
function To_Boolean is new Convert_To_Boolean(Bool);
function To_Date is new Convert_To_Date(Birth_Date_Type);
My_Bool : Bool;
Elvis : Birth_Date_Type;

begin
...
My_Bool := To_Boolean(“F”);
Elvis := To_Timestamp(“1957-01-08”);

5.4 The Convert_Date_and_Time Generic Function

Sometimes the programmer needs the convenience of putting separate date and time
values together into a returned timestamp value. For example the date of birth may be
stored in one database column, while the time of birth is stored in another. It may be
necessary to work with a timestamp value instead, that contains both of these compo-
nents. To permit the use of strongly typed values, a generic function is provided for
this purpose.

The generic inputs to Convert_Date_and_Time are:

Argument Name Data Type Notes

Date_Type is new Ada.Calendar.Time Type of input date value
Time_Type is new Ada.Calendar.Day_Duration Type of input time value
Result_Type is new Ada.Calendar.Time The type of the returned timestamp

The instantiated function has the following calling signature:

Argument in out Type Default Description

1 DT in Date_Type - The input date value
2 TM in Time_Type - The input time value

returns Result_Type The combined date and time

The following example shows how to apply this function:

declare

112 CHAPTER 5. UTILITY FUNCTIONS

type My_Date_Type is new APQ_Date;
type My_Time_Type is new APQ_Time;
type My_Timestamp_Type is new APQ_Timestamp;
function To_Timestamp is new

Convert_Date_and_Time(
Date_Type => My_Date_Type,
Time_Time => My_Time_Type,
Result_Type => My_Timestamp_Type);

Some_Date : My_Date_Type;
Some_Time : My_Time_Type;
Some_Timestamp : My_Timestamp_Type;

begin
...
Some_Timestamp := To_Timestamp(Some_Date,Some_Time);

5.5 The Extract_Timezone Generic Procedure

When a database table or result column provides a timestamp and timezone together,
it is sometimes necessary to extract these components so that they can be manipulated
separately. To permit the use of application defined types, a generic procedure is pro-
vided. The Extract_Timezone generic procedure requires the following inputs:

Argument Name Data Type Notes

Date_Type is new Ada.Calendar.Time Type of output date value
Zone_Type is new APQ_Timezone Type of output timezone value

The instantiated function has the following calling signature:

Argument in out Type Default Description

1 S in String - The input timestamp and zone value
2 DT out Date_Type - The output timestamp value
3 TZ out Zone_Type - The output timezone value

The following exceptions are possible:

Exception Name Reason

Invalid_Format The input value was not a proper value for the type

The following example shows how to apply this procedure:

declare
type My_Date_Type is new APQ_Timestamp;
type My_Zone_type is new APQ_Timezone;
procedure Extract is new Extract_Timezone(My_Date_Type,My_Zone_Type);
Ex_Date : My_Date_Type; -- Extracted timestamp
Ex_Zone : My_Zone_Type; -- Extracted timezone

begin
...
Extract(“1957-01-08 01:13:45+04”,Ex_Date,Ex_Zone);

Chapter 6

Calendar Functions

There is frequently the need in applications to separate out the hour, minute and second
from a time value. To make this easier, and to permit the continued use of strong typing,
the following generic functions are available:1

Generic Name Return Type Description

Generic_Hour Hour_Number Extracts the hour from time
Generic_Minute Minute_Number Extracts minute from time
Generic_Second Second_Number Extracts second from time

Any of these generic functions require the following generic parameters:

Argument Name Data Type Notes

Time_Type is new Ada.Calendar.Day_Duration Type of input time value

The instantiated function has the following calling signature:

Argument in out Type Default Description

1 TM in Time_Type - The input time value
returns Unit_Type Unit = Hour, Minute or Second

The following example shows how to apply this procedure:

declare
type Evt_Time_Type is new Ada.Calendar.Day_Duration;
function Hour is new Generic_Hour(Evt_Time_Type);
function Minute is new Generic_Minute(Evt_Time_Type);
Evt_Time : Evt_Time_Type;
HH : Hour_Number;
MM : Minute_Number;

begin

1It could be argued that these generic functions do not go the full generic distance, because the return
value types are standard types only (types Hour_Number, Minute_Number and Second_Number).

113

114 CHAPTER 6. CALENDAR FUNCTIONS

...
HH := Hour(Evt_Time); -- Extract Hour
MM := Minute(Evt_Time); -- Extract Minute

Chapter 7

Decimal Support

In order to support accurate number calculations, particularly for financial work, the
package APQ.PostgreSQL.Decimal is available for the programmer to use. This pack-
age is based upon the C source code extracted out of the PostgreSQL server.1 The
decimal support is not a floating point package, but does support approximately 1,000
digits worth of accuracy. Note that this is currently PostgreSQL specific code, and as
such, it has not been reworked for general use in databases like MySQL.

7.1 Introduction

The PostgreSQL.Decimal package is a binding to the extracted server decimal code.
This gives the Ada programmer access to the same numeric support as used by the
database engine to sum columns etc. Because it is decimal based, you will not have to
worry about representation issues for values like 0.3,2 allowing for accurate sums and
hash total calculations.

Special Note: The PostgreSQL.Decimal package is still under development,
and is subject to change. One of the most serious limitations at present is the fact
that assignment clobbers any prior concept of precision and scale for the variable
being assigned to. To overcome this, it is possible that a future implementation
of this package may provide task safe storage to preserve the variable’s precision
and scale. This can be done by saving the variable’s precision and scale in task
safe storage at finalization time. When the Adjust primitive is later called, the
saved precision and scale can be restored and followed by a call to the Constrain()
function. This will implicitly keep the variable within its configured precision and
scale parameters.

1Portions copyright (c) 1996-2001, The PostgreSQL Global Development Group, and portions copyright
(c) 1994, The Regents of the University of California.

2In binary floating point, the value 0.3 must be represented as 0.29999 repeat.

115

116 CHAPTER 7. DECIMAL SUPPORT

7.2 Decimal Exceptions

The PostgreSQL.Decimal binding can raise any of the following set of exceptions:

Exception Name Reason

Decimal_NaN The value is “Not a Number“ (or value is NULL)
Decimal_Format Input does not properly represent a decimal number

Decimal_Overflow The value over/under-flowed.
Undefined_Result The computation does not have a defined result
Divide_By_Zero An attempt to divide by zero occurred

7.3 “Not a Number” Operations

A new Decimal_Type value is initialized to NaN (Not a Number). This is a special
status for the value, which can be assigned to other Decimal_Type values. When this
status is detected in an expression where a computation is being performed, the excep-
tion Decimal_NaN is raised to indicate that no valid result can be determined.

7.4 The Decimal_Type Type

Decimal values are manipulated in a type, which is defined in terms of a tagged con-
trolled record:

type Decimal_Type is new Ada.Finalization.Controlled with private;

These values are further defined by the following additional two attributes:

Precision specifies the precision of the decimal variable

Scale specifies the scale of the decimal variable

7.5 Is_NaN Function

To test if a value is “Not a Number”, the Is_NaN function can be used:

Argument in out Type Default Description

1 DT in Decimal_Type - The input decimal value
returns Boolean True if the value is “Not a Number“

The following example shows how to apply the function:

declare
D : Decimal_Type;

begin

7.7. TO_STRING FUNCTION 117

if Is_NaN(D) then
Put_Line(“D is NaN!”);
...

7.6 Convert Procedure

To import a large decimal value from a String, the programmer may invoke the Convert
procedure:

Argument in out Type Default Description

1 DT in out Decimal_Type - The decimal value to be changed
2 S in String - The input string with numeric value
3 Precision in Precision_Type 0 The precision of the value
4 Scale in Scale_Type 2 The scale of the value

The arguments Precision and Scale arguments can be omitted if you can accept the
default values of 0 and 2 for the precision and scale respectively. When Precision is
given as zero, the value has no defined precision, and may grow to whatever size is
necessary to carry the result.3

The following example shows how to initialize a Decimal_Type from a string:

declare
D : Decimal_Type;

begin
Convert(D,”12345.6789”,0,4);

7.7 To_String Function

To make a Decimal_Type value printable, you can call upon the To_String function:

Argument in out Type Default Description

1 DT in Decimal_Type - The input decimal value
returns String String representation of the value

The To_String will return the string “NULL” if the value is in the “Not a Number”
state.

The following example shows how to use it in a Print_Line call:

declare
D : Decimal_Type;

begin
...
Put_Line(“D := “ & To_String(D));

3The source code indicates that the maximum precision is approximately 1,000 decimal digits.

118 CHAPTER 7. DECIMAL SUPPORT

7.8 Constrain Function

Sometimes it is desireable to constrain a result to a particular precision and scale, while
watching for overflows. The Constrain function takes an input value, and returns a new
value with the values constrained to the given precision and scale:

Argument in out Type Default Description

1 DT in Decimal_Type - The input decimal value
2 Precision in Precision_Type - The precision for the returned value
3 Scale in Scale_Type - The scale for the returned value

returns Decimal_Type The constrained value

The returned value is rounded (if necessary) to accomodate the Scale argument.
The result must fit within the precision given by the Precision argument. The following
example illustrates how the function is used:

declare
A : Decimal_Type;
B : Decimal_Type;

begin
A := ...some calculation...;
B := Constrain(A,10,2); -- Precision 10, Scale 2

7.9 Expression Operations

The Decimal_Type values can be both assigned and computed with the normal set of
operators:

Operator Description

+ Add
- Subtract
* Multiply
/ Divide

unary - Negate
= Equal
< Less than

<= Less than or equal
> Greater than

>= Greater than or equal

The following code fragment shows some Decimal_Type expressions at work:

declare
Watts_per_Hp : Decimal_Type;
Watts : Decimal_Type;
Volts : Decimal_Type;
Amperes : Decimal_Type;

7.11. ABS_VALUE, SIGN, CEIL AND FLOOR FUNCTIONS 119

Hp : Decimal_Type;
begin

Convert(Watts_per_Hp,”745.577”,0,3); -- Watts / HP
Convert(Volts,”120.0”,0,1);
Convert(Amperes,”7.0”,0,1);
Watts := Volts * Amperes; -- # of Watts
Hp := Watts / Watts_per_Hp; -- # of Horsepower

7.10 Minimum and Maximum Values

The Min_Value and Max_Value functions are available to the programmer to conve-
niently return the minimum or maximum value of a pair, respectively. These functions
share the following common calling signature:

Argument in out Type Default Description

1 Left in Decimal_Type - The left input decimal value
2 Right in Decimal_Type - The right input decimal value

returns Decimal_Type The min/max value

The following example illustrates its use:

declare
A, B : Decimal_Type;
Smallest : Decimal_Type;

begin
Smallest := Min_Value(A,B);

7.11 Abs_Value, Sign, Ceil and Floor Functions

The functions in the following table are documented in this section:

Function Name Description

Abs_Value Absolute Value
Sign Sign of the value (+1 or -1)
Ceil Ceiling value

Floor Floor value

These functions all share the following calling requirements:

Argument in out Type Default Description

1 DT in Decimal_Type - The input decimal value
returns Decimal_Type The result value

120 CHAPTER 7. DECIMAL SUPPORT

The following example illustrates its use:

declare
A, B : Decimal_Type;
Pos_Val : Decimal_Type;

begin
Pos_Val := Abs_Value(A,B);

7.12 Sqrt, Exp, Ln and Log10 Functions

The functions in the following table are documented in this section:

Function Name Description

Sqrt
� �

Exp � x

Ln ��� �
Log10 �����
	�� x

These functions all share the following calling requirements:

Argument in out Type Default Description

1 X in Decimal_Type - The input decimal value
returns Decimal_Type The result value

The following example illustrates its use:

declare
X : Decimal_Type;
L10 : Decimal_Type;

begin
L10 := Log10(X);

7.13 The Log Function

The Log function permits the caller to evaluate a logrithm ����� base x . It has the follow-
ing calling requirements:

Argument in out Type Default Description

1 X in Decimal_Type - The input decimal value
2 Base in Decimal_Type - The input number base

returns Decimal_Type ���� base x

7.15. THE ROUND AND TRUNC FUNCTIONS 121

The following example illustrates its use:

declare
X : Decimal_Type;
Base : Decimal_Type;
L : Decimal_Type;

begin
L := Log(X,Base);

7.14 The Power Function

The Power function permits the caller to evaluate the expression xy. The function
accepts the following calling arguments:

Argument in out Type Default Description

1 X in Decimal_Type - x
2 Y in Decimal_Type - y

returns Decimal_Type xy

The following example assigns to P, the value xy.

declare
X : Decimal_Type;
Y : Decimal_Type;
P : Decimal_Type;

begin
P := Power(X,Y);

7.15 The Round and Trunc Functions

To round or truncate a Decimal_Type value, the application designer may call the
Round and Trunc functions respectively. They both accept the following calling ar-
guments:

Argument in out Type Default Description

1 DT in Decimal_Type - The input value
2 Scale in Scale_Type - The number of decimal places

returns Decimal_Type Rounded or truncated value

The following example assigns to R, the rounded value of X, to 2 decimal places:

declare
X : Decimal_Type;
R : Decimal_Type;

begin
R := Round(X,2);

122 CHAPTER 7. DECIMAL SUPPORT

7.16 Builtin Decimal_Type Constants

The builtin decimal constants are defined as the following functions:

Function Name Value

Zero 0.0
One 1.0
Two 2.0
Ten 10.0
NaN Not a Number (NULL)

The NaN function can be used to put a value into a “Not a Number” state. This
doubles as setting the value to NULL, for SQL query use.

7.17 Using Decimal_Types with Query_Type

Creating SQL queries using the Decimal_Type and retrieving values from SQL queries
has been made easy for the application programmer. The NaN state is used to represent
a NULL value. This eliminates the need for the application programmer to define
indicator values.

The Append procedure allows the programmer to build SQL queries with Deci-
mal_Type values. The Value function, permits the programmer to retrieve a column
value into a Decimal_Type variable (with or without a NULL value).

7.17.1 Using Decimal_Type with Append

The Append procedure has the following calling signature:

Argument in out Type Default Description

1 Query in out Query_Type - SQL Query object
2 DT in Decimal_Type’Class - The value to encode
3 After in String ““ Additional text to append

The following example illustrates:

7.17.2 Fetching Decimal_Type Values

A decimal value may be retrieved from a SQL query, using the Value function:

Argument in out Type Default Description

1 Query in Query_Type - The SQL query object
2 CX in Column_Index_Type - The column index

returns Decimal_Type The Decimal_Type result

7.17. USING DECIMAL_TYPES WITH QUERY_TYPE 123

If the returned value for the column is NULL, the value returned will be in the NaN
state. The following example illustrates how to apply the Value function:

declare
C : Connection_Type;
Q : Query_Type;
D : Decimal_Type := NaN;

begin
...
Prepare(Q,”SELECT QTY, ...”);
Append_Line(“FROM ORDERS”);
Execute(Q,C);
while not End_of_Query loop

Fetch(Q);
D := Value(Q,1); -- Fetch Decimal_Type

end loop;
Clear(Q);

124 CHAPTER 7. DECIMAL SUPPORT

Chapter 8

Generic Database Programming

With APQ 2.0, the support of the MySQL database becomes available. The future may
allow APQ to support even more database technologies. With this in mind, it becomes
very desireable in some circumstances to write applications in a database neutral way.
Within this documentation, we will use the term “Generic Database Programming” to
describe this strategy.

This chapter is about programming for databases generically. Given that APQ is
built using object oriented techniques (tagged Ada95 records), it should be possible to
leverage this in a way to write application procedures once, and enjoy the flexibility of
choosing or changing the database technology used later. Section 3.3.6 identified one
aspect of generic database processing.

8.1 Generic Connections

For most routine database work, the only object that needs to be defined up front, is the
database connection. In APQ version 2.0, there are only two concrete choices for this:

1. APQ.PostgreSQL.Client.Connection_Type

2. APQ.MySQL.Client.Connection_Type

Once the high level layer of the application chooses one of these connection objects,
and establishes a connection with the database, the connection object may be passed
around as parameters to procedures. The recommended generic way to do this, is to
pass the connection as a Root_Connection_Type’Class parameter. See the following
example:

procedure MyApp(C : in out APQ.Root_Connection_Type’Class) is
begin

...

The classwide parameter then permits any database connection object to be passed as a
parameter. The classwide attribute causes all operations performed upon that object to

125

126 CHAPTER 8. GENERIC DATABASE PROGRAMMING

be dispatching calls (by default). By dispatching on the object’s primitives, you ensure
that database specific operations are carried out according to the type of database being
used.

8.2 Database Specific Code

Due to the wide differences that sometimes exist between database engines, it is some-
times necessary to take different course of action, depending upon the database being
used. For example, PostgreSQL allows a varchar(256) column to be defined, where
MySQL is limited to varchar(255) instead.1

To determine the database being used, use the Engine_Of predicate function. This
primitive exists on both the Root_Connection_Type and Root_Query_Type objects.
Sections 2.8.2 and 3.3.7 describe functions and examples for this purpose.

Obviously, if you are only given a Root_Connection_Type’Class connection argu-
ment to use, you cannot know in advance which Query_Type object to use. Make use
of the New_Query factory (See section 2.8.3) or use cloning (section 2.8.4) if you have
an existing Query_Type object available.

8.2.1 Row ID Values

When designing a new system, it is important to plan for the use of Row ID values.
MySQL does not support them at all, while PostgreSQL encourages their use.2 MySQL
encourages the use of serial values instead, which is a good practice. For generic
database programming you must plan for these differences to reduce the amount of
specialized code. For more information about obtaining row ID values, see the section
3.3.4, and section 3.3.4 for portability notes.

Additionally, the assumptions about what constitutes a null row ID must be scruti-
nized. Since different databases use different values to represent “no row”, you should
make careful use of the APQ Null_Oid function, rather than depend upon a particular
constant. See section 3.7.2 for information about that.

8.3 Data Types

When writing generic database code it is important to choose your datatypes very care-
fully. One example where this is important is when using a PostgreSQL time zone
type (APQ_Timezone). While a time zone variable can be used in MySQL specific
code, it should be emphasized that MySQL does not support time zone values within a
TIMESTAMP database column type.

A similar problem exists with PostgreSQL bit string types (APQ_Bitstring). MySQL
does not support them. So if you want to write generically, stick to simple data types
in your application.

1MySQL requires you declare the type as TEXT if you need more than 255 characters.
2For example, a blob is identified by a Oid value, which is basically a row ID.

8.4. PULLING IT ALL TOGETHER 127

When you must make use of special database types, be prepared to specialize the
code somewhat, depending upon the database being used. Obviously, a designer will
want to minimize this as much as possible.

8.3.1 Column Types

Another area that is important to consider is the database column types that are chosen
for tables. Comparing the table in sections 1.5.1 and 1.5.2, the reader can see that most
columns can be declared in SQL using the same column type declarations. However,
there are some important differences. For example, a SERIAL column in PostgreSQL
must be declared as an INTEGER type when using MySQL. For most applications, this
is not too much of an issue, because applications usually don’t create and drop tables.
However, this does sometimes occur with temporary tables.

As noted in the prior section, MySQL also does not directly support some data types
such as the time zone value within a DATETIME type. If time zones must be supported,
the writer may simply add a time zone column declared in SQL as a SMALLINT value,
and work with the time zone separately.

8.4 Pulling it All Together

This section will examine a fairly trivial example of a generic database procedure.
It will make one exception for MySQL, so that the reader will know how to work
with database engine differences. Ideally, you would want to avoid these differences,
wherever possible.

The example is a real world example. A procedure is required to fetch the most
recent stock price available on file, for a given security (by ticker symbol). While there
may be a price for the security on the given day, if there is not one listed, the procedure
is expected to fall back to the most recent price available. The table being consulted, is
defined as follows:

CREATE TABLE PRICE_HIST (
SECURITY CHAR(10) NOT NULL,
PRICE_DATE DATE NOT NULL,
PRICE REAL NOT NULL,
PRIMARY KEY(SECURITY,PRICE_DATE)

);

Here is the package spec for the Prices module, which makes the procedure Last_Price
available for use:

with APQ;
use APQ;

package Prices is

procedure Last_Price(
C : in out Root_Connection_Type’Class;

Security : in String;

128 CHAPTER 8. GENERIC DATABASE PROGRAMMING

Price : out APQ_Double
);

end Prices;

Given any database connection, and a ticker symbol provided in argument Security,
the procedure Last_Price is expected to lookup the most recent stock price in the
PRICE_HIST table and return that price in the Price argument. Here is the body of
the package, written to work with any database:

package body Prices is
procedure Last_Price(

C : in out Root_Connection_Type’Class;
Security : in String;
Price : out APQ_Double

) is
function Value is new Float_Value(APQ_Double);

Q : Root_Query_Type’Class := New_Query(C);
begin

Prepare(Q, "SELECT SECURITY,PRICE_DATE,PRICE");
Append_Line(Q, "FROM PRICE_HIST");
Append(Q, "WHERE SECURITY = ");
Append_Quoted(Q,C,Security,Line_Feed);
Append_Line(Q, "ORDER BY SECURITY,PRICE_DATE DESC");

if Engine_Of(C) = Engine_MySQL then
Append_Line(Q,"LIMIT 1");

end if;

Execute(Q,C);

begin
Fetch(Q);

exception
when No_Tuple =>

raise; -- Indicates no price
end;

Price := Value(Q,3);

end Last_Price;

end Prices;

A few notes are necessary: The spec already with’s and uses the package APQ. So it is
not repeated in the body of the package. The Last_Price procedure takes a Root_Connection_Type’Class
connection object type, so it can be supplied with a MySQL or PostgreSQL database
connection.

The New_Query factory function is used to create the correct Query_Type object
necessary to form and execute the query. The Prepare, Append_line, Append_Quoted
calls build up an SQL query, and then the type of the database is queried by calling

8.4. PULLING IT ALL TOGETHER 129

Engine_Of. If the database being used is a MySQL database, the query is optimized3

so that only one row is returned by use of the extended SQL “LIMIT 1” clause.
Note that the “ORDER BY” clause requires that the sort order be descending (most

recent dates first). Given that the “ORDER BY” clause specifies indexed columns,
this retrieval should be quick since a reverse index retrieval is possible (if the database
cannot do this, you should create a new index or fix the primary key to be descending).

Since we are only interested in the most recent price (ie. one price), only one Fetch
call is made. This is not a problem for PostgreSQL, but it is for MySQL if there there
are more than one rows of result (see section 3.5.1 to find out why). If the database
is MySQL the problem is addressed by adding to the query a MySQL extended clause
“LIMIT 1”, to limit the results to one row.

The price is then fetched from column 3 (PRICE) and the procedure returns. If no
rows are returned, we simply raise the APQ.No_Tuple exception here to keep the ex-
ample simple. A finished application would either declare a proper application specific
exception, or handle the problem with an indicator.

The important thing to recognize here is that there is nothing specific to the type of
database being used in this Prices package, except for the MySQL work-around. The
only APQ package being used is APQ, and the root types for connection and query
types.

Here is a PostgreSQL main program:

with Ada.Text_IO;
with APQ.PostgreSQL.Client;
with Prices;

use APQ, Prices, APQ.PostgreSQL.Client, Ada.Text_IO;

procedure Price_PG is
C : Connection_Type;
P : APQ_Double;

begin

Set_DB_Name(C,"investments");
Connect(C);

Last_Price(C,"RHAT",P);
Put_Line("RHAT $" & APQ_Double’Image(P));

Disconnect(C);

end Price_PG;

Please notice the following points about the main program:

1. The database specific package is with’ed as APQ.PostgreSQL.Client here to
choose the database connection being used.

2. The Connection_Type object is declared in APQ.PostgreSQL.Client and derives
from APQ.Root_Connection_Type.

3One could also argue that it is “fixed” here, since MySQL insists that all row results of a query be
fetched.

130 CHAPTER 8. GENERIC DATABASE PROGRAMMING

3. The database is chosen and a connection is established.

4. The Last_Price procedure is called, providing only the connection and the secu-
rity’s ticker symbol that the price is being sought for.

5. The returned price P is then printed (crudely)

6. The application disconnects from the server and exits.

The main program for MySQL use, is virtually identical:

with Ada.Text_IO;
with APQ.MySQL.Client;
with Prices;

use APQ, Prices, APQ.MySQL.Client, Ada.Text_IO;

procedure Price_My is
C : Connection_Type;
P : APQ_Double;

begin

Set_DB_Name(C,"investments");
Connect(C);

Last_Price(C,"RHAT",P);
Put_Line("RHAT $" & APQ_Double’Image(P));

Disconnect(C);

end Price_My;

The only difference between this MySQL main program and the prior PostgreSQL
main program, is the name of the package used (APQ.MySQL.Client). APQ truly is
the closest thing to database independance!

8.5 Miscellaneous Portability Issues

There are a number of other database portability issues that should be born in mind.
An incomplete list has begun in this document below:

� temporary tables creation

� SELECT ... INTO TABLE ...

This list will likely grow as the author and the APQ community applies APQ to generic
database programming.4

4Contributions are welcome.

8.5. MISCELLANEOUS PORTABILITY ISSUES 131

8.5.1 Temporary Tables

Many databases allow the SQL programmer to create a temporary table prior to its
use in the application. This temporary table is only visible to the user of the estab-
lished database connection. When the database connection is closed or disconnected,
the temporary table is automatically discarded and its space recycled by the database
engine.

The difficulty that a generic database programmer needs to be aware of is that some
databases work differently. Normally, an application would perform something like the
following to create a temporary table in the database session that required it:

CREATE TEMP TABLE INTERMED_RESULTS (
SECURITY CHAR(10) NOT NULL,
HOLDINGS BIGINT NOT NULL

);

Subsequent to the successful creation of this temporary table, the application would
populate it and use it as necessary. The application may even create indexes on the
table after the table is populated, to help performance in later stages of the table’s use.

While this works for PostgreSQL and MySQL, the generic programmer should be
aware that this will not work on an ORACLE database (when APQ gets there some
day). ORACLE permits the same syntax, but operates differently: ORACLE only
permits one CREATE TEMP TABLE operation to be performed, in the same way that
a permanent table is created. Once created, the user implicitly gets access to the table
upon demand. Upon the first reference to the temporary table in a particular session,
you get a temporary table created, which is empty. You then populate and use that
temporary table without ever having to create it within that particular session. When
the session is over, the table’s contents are discarded.

So how do you plan for this? If the Engine_Of() function indicates Engine_ORACLE,
you must not create the temporary table during your database session. This will be done
when the permanent tables are created.5 For other database engines, you should create
the temporary table when you are about to use them in your application.

Indexes on Temporary Tables

There is an additional piece of advice to consider when creating indexes for temporary
tables. For performance reasons, it is often best to populate the temp table with no
indexes created. After the table has been populated, indexes can then be efficiently
added and dropped as the needs arise.

In the ORACLE case, these indexes are likely to be predefined as is the declara-
tion of the temporary table itself. So when creating indexes for temporary tables, you
should also probably test for ORACLE in the generic code. When using ORACLE,
you probably do not want to create or drop the index, as it will probably affect all users
of that temporary table definition.6

5In many respects, this is perhaps the best time to declare and plan for a temporary table.
6The author has not verified this point, and the reader is encouraged to do so.

132 CHAPTER 8. GENERIC DATABASE PROGRAMMING

8.5.2 SELECT ... INTO TABLE

A number of database engines support a SQL syntax along the lines of:

SELECT *
FROM MY_TABLE
WHERE ...
INTO TEMP TABLE TEMP123

The above SQL code performs the usual SELECT, but places its results into a tempo-
rary table named TEMP123.7 Alternatively, databases will also often permit:

SELECT *
FROM MY_TABLE
WHERE ...
INTO TABLE RESULTS

This query places the results into a permanent table named RESULTS (note that the
keyword TEMP was dropped).

Both of these operations are very convenient for processing intermediate results.
However, database engines vary in their support. Neither of these formats are supported
by PostgreSQL or MySQL, but they are supported by INFORMIX.

The SQL-99 way to perform this operation is specified as follows:

INSERT INTO RESULTS
SELECT *
FROM MY_TABLE
WHERE ...

This syntax is supported by both PostgreSQL and MySQL for permanent tables.
There is no provision currently to create a temporary table on the fly with syntax

shown on page 132 using PostgreSQL or MySQL. So even SQL-99 syntax won’t help
you there. You can only create a temporary table, and then use the INSERT INTO ...
SELECT syntax after the temporary table is created. But don’t forget the limitation in
section 8.5.1.

7One application framework that the author is familiar with used a suffix of “123” to denote the name of
a temporary table.

Chapter 9

Troubleshooting

There are several problems that can crop up in applications using the APQ Binding.
These problems usually fall into one of the following categories:

� PostgreSQL database server “personality”

� The PostgreSQL libpq C library interface

� The APQ binding itself

The APQ Binding attempts to insulate the user as much as is practical from the libpq
C library issues and the database server. However, some issues still manage to poke
through. This chapter is an attempt to provide some useful advice for those people that
are encountering unexpected behaviour, using the APQ Binding.

9.1 General Problems

The following subsections provide general troubleshooting help with APQ binding is-
sues.

9.1.1 Missing Rows After Inserts

The first step in identifying whether this section applies to you or not, is to ask:

� is transaction processing being used?

� or, is a transaction pending when it shouldn’t be?

If the second bullet applies to you, then you need to correct the logic in your program
(but read on to find out why).

On the other hand, if you are purposely using transactions (first case) and you are
losing inserted row information, then it is likely that you are suffering from an aborted
transaction. It may also represent an APQ binding bug.

133

134 CHAPTER 9. TROUBLESHOOTING

The APQ Binding should prevent aborted transactions from being left unnoticed.1

When the database server notificaties the APQ binding that an “abort state” has been
entered2, any further attempts to execute SQL queries or COMMIT WORK on that
connection, will raise the Abort_State exception (see also sections 2.5.4 and 3.4).

One common reason is an application inserts row(s) into a table, and intercepts the
SQL_Error exception. This exception is caught because the application writer wants
to ignore the insert on a duplicate key error. The difficulty here is that the database
engine will enter an “abort state” after the failed INSERT operation, regardless of how
the application handles the exception. The only recourse to recovery at this point is to
rollback the transaction with a call to Rollback_Work (section 3.4).

This brings up a question about the APQ Binding. Why doesn’t the APQ binding
raise Abort_State immediately after the failed INSERT operation within a transaction?
There are two reasons:

1. The “Abort State” notice is provided to the APQ binding in the form of a call-
back.

2. Processing SQL_Error exception within a transaction implies an aborted trans-
action.

Notices are received by the APQ binding by registering a callback with the database
server. As a result, it is not always possible to know about the “abort state” when it
might be critical to the application. Even if the information is available, this may not
always be so in future versions of PostgreSQL (timing may change).

The very fact that you’ve started a transaction with Begin_Work and you have en-
countered an SQL_Error exception should tell you that you must Rollback_Work and
recover. So as the developer, you should be thinking:���������	�
���� ����� ��������� ��������� ��!#"����$���

The APQ binding has been designed to avoid several SQL statements from being
executed and being ignored because the database server is in the “Abort State”. This is
why the Execute and Commit_Work calls check for this and raise the Abort_State ex-
ception. However, the best advice is to not rely on this mechanism when programming
the logic of your application.

9.1.2 Missing Time Data (Or Time is 00:00:00)

You build a query to insert or update a row with date and time information, but only
the date is getting stored in the database. The time component always reads midnight
(00:00:00). Or perhaps you provide a date and time stamp as part of a where clause,
but it fails because only the date value is being put into the query (the time component
always shows as midnight). You print out the variables using To_String and they show
the correct values, as follows:

1If however, the Abort_State exception is never being raised, then it is possible you have a PostgreSQL
porting issue. If the PostgreSQL notice message format changes, the APQ bindign code will fail to recognize
the notification of an “abort state” from the database server.

2After a duplicate key on insert error, for example.

9.1. GENERAL PROBLEMS 135

declare
type My_Date_Type is new APQ_Timestamp;
My_Date : My_Date_Type;

begin
...
Put_Line(“My_Date=”’

To_String(APQ_Timestamp(My_Date))
& “”’);

The above symptoms are the result of a common problem. This human error is easy
to make and is due to choosing the incorrect generic procedure. Look for a generic
instantiation statement like the following:

procedure Append
is new Append_Date(My_Date_Type);

If your data type My_Date_Type holds time information, then it is likely that you meant
to code the following instead:

procedure Append
is new Append_Timestamp(My_Date_Type);

The error was choosing generic procedure Append_Date over the correct Append_Timestamp
routine.

A similar mistake can be made choosing between Encode_Date and Encode_Timestamp
generic procedures. So watch for these subtle differences!

9.1.3 Exception No_Tuple

If you are having the exception No_Tuple being raised when you don’t think it should
be, then check to see if the following apply:

� Are you using MySQL?

� Do you have End_of_Query function calls used?

If you do, then you need to look for code structured as:

while not End_of_Query(Q) loop
Fetch(Q);
...

end loop;

This type of code works well for PostgreSQL, but may be problematic with some other
databases (MySQL has a problem with this). Restructure your code to eliminate the
calls to End_of_Query. Section 3.5.5 describes the problem in greater detail. Restruc-
ture the loop to something like the following:

136 CHAPTER 9. TROUBLESHOOTING

loop
begin

Fetch(Q);
exception

when No_Tuple =>
exit;

end;
...

end loop;

9.1.4 Database Client Problems

If problems with the database engine begin to occur after a particular query, look for
the following:

� Are you using MySQL?

� Are your doing a SELECT, or otherwise returning row results?

� Is your Query_Type object in Sequential_Fetch mode?

� Is your code fetching all row data?

This problem may occur with MySQL, since the client library for MySQL requires
that all row result data be fetched. Failure to fetch all rows may cause a backlog in
communication with the database server and cause a multitude of strange behaviour
and errors, when new queries are started (with the old results still waiting to be fetched).
The Query_Type object defaults to Random_Fetch mode however, so unless your code
has changed the fetch mode of the object, this may not be your problem.

9.1.5 Client Performance or Memory Problems

Check to see if the following apply:

� Are you using MySQL?

� Are you doing a SELECT or otherwise returning large row sets?

� Is your Query_Type object in Random_Fetch mode? This is the default.

If the above are all true, then it is possible you have formed a query that has generated a
large row set. Since the default for the Query_Type object is for Random_Fetch mode,
the APQ library calls upon mysql_store_result() to fetch all of the result set into the
client memory for random access. For reasonable sized sets of rows, this works well,
but for large results this can be very expensive and may run your application out of
memory.

Consider the PRICE_HIST table like the one discussed on page 127. For MySQL,
if you fail to include the LIMIT 1 clause, and your Query_Type object uses the default
Random_Fetch mode, you could easily find your application selecting the entire history

9.2. BLOB RELATED PROBLEMS 137

of one security into your application client memory! If you have several years of price
history for that stock, your application may be destined to run out of memory the first
time that query is run.

When using the MySQL database, you must consider the following:

� MySQL fetches in Random_Fetch mode must guarantee a reasonably small re-
sult set (use the LIMIT clause if necessary).

� MySQL fetches in Sequential_Fetch mode must fetch all row data

Unless otherwise noted, you probably do not need to be concerned about this. Post-
greSQL for example, does not require all row data to be fetched. However, if there
are ways to restrict the row set, this may improve performance for any given database
engine involved, and should be considered.

9.1.6 Can’t Find Existing Table Names

Some databases use caseless references to database objects, while others are case sen-
sitive (MySQL can be either). If you are using MySQL and experiencing problems,
consider adding the parameter:

[mysqld]
set-variable = lower_case_table_names=1

to your MySQL database configuration. By default, MySQL distinguishes between
table names PRICE_HIST, Price_Hist, and price_hist for example.

9.1.7 Failed Transactions

You should be aware that PostgreSQL will abort a transaction if an insert is attempted
that proves to be a duplicate entry (or has a duplicate key). APQ tracks this status
(Abort Status) to help the application programmer debug his application.

Other databases, like MySQL do not abort the transaction if one step in the trans-
action fails (like a duplicate insert). For this reason, you may need to review how your
application code is dealing with situations like potential duplication inserts.

This problem is mostly likely to be noticed when you have developed your appli-
cation using a database like MySQL, and then migrated it to PostgreSQL.

9.2 Blob Related Problems

Blob operations on a database can be tricky to get right. The following subsections
provide assistance with blob related problems.

138 CHAPTER 9. TROUBLESHOOTING

9.3 Blob_Create and Blob_Open Fails

You have written what seems like a simple piece of code that creates a blob, and then
writes some data to it. It couldn’t possibly fail on paper, but it does when you run it. Or
you are wondering why that Blob_Open call keeps failing, because you are certain that
the OID of that blob surely does exist. These are both symptoms of the same problem!

“All blob operations in PostgreSQL must be performed within a transac-
tion “

Repeat it to yourself again.
Unless you have started a transaction on the connection that you are using, all

blob operations will fail. They will only succeed within a transaction. Furthermore,
make certain your application commits the changes to your blob, after they have been
performed successfully. Otherwise your application may fall prey to the default actions
of PostgreSQL, which may be to rollback your changes.3

9.4 Blob I/O Buffering Bugs Suspected

If you have good reason to believe that the APQ binding software4 has a bug in its
buffered blob I/O, you can disable blob I/O buffering. This is done by specifying a
value of zero for the Buf_Size argument in the Blob_Open and/or Blob_Create calls
that you are troubleshooting. Be prepared to accept a large degradation in performance
when specifying unbuffered I/O this way. The performance is especially poor when
array I/O is performed.

Another possibility might be that you need to call upon Blob_Flush at strategic
points in your application. While the buffering algorithms used are such that you should
not need to worry about this, it is worth investigating.

Note also that multiple write access to the same blob is definitely not supported by
APQ.

9.5 Transaction Problems

The following subsections deal with transaction problems that may occur with appli-
cation termination.

9.5.1 Abnormal Termination of Transactions

The APQ binding is designed to commit or rollback a transaction when the Connec-
tion_Type object finalizes. The default behavior of the Connection_Type is to ROLL-
BACK WORK, when the object finalizes5. Consequently, if your program raises an un-
caught exception (perhaps Program_Error or Constraint_Error), the Connection_Type

3Check your PostgreSQL documentation to determine what the default transaction action is for your
version of PostgreSQL database.

4Only APQ versions 1.2 and later have buffered blob I/O.
5Provided that the Connection_Type object is connected to the database at the time of finalization.

9.6. SQL PROBLEMS 139

object will finalize and rollback the transaction on you.6 If this is undesired behaviour,
then check out the Set_Rollback_On_Finalize primitive in section 2.6.1.

9.5.2 Aborted Applications

The APQ binding can only perform the default COMMIT/ROLLBACK action (see
section 2.6.1) if the Connection_Type object is permitted to have its Finalize primitive
called. If the process under UNIX for example, is terminated with a signal (by the
kill(1) command), the objects within your application may not experience a Finalize
call, because normal Ada shutdown procedures were not invoked.7 If this is the reason
for your problem, then you have two courses of action:

� Commit/Rollback explicitly in the program (prior to receiving a signal)

� Avoid signalling the application

� Add signal handling capability to your Ada application, to permit an orderly
application shutdown

The choice is generally up to the application designer. Whenever possible however,
where it is important, the application should perform its own explicit commit or roll-
back operation.

9.6 SQL Problems

If you are experiencing SQL problems that you don’t understand, the quickest way to
inspect what is really going on is to use the APQ trace facility. The documentation for
the SQL trace facility is given in section 2.7.

9.6.1 Tracing SQL

Where your Connection_Type connects to the database, add a call to Open_DB_Trace
as follows:

declare
C : Connection_Type;

begin
...
Connect(C);
Open_DB_Trace(C,”trace_file.txt”,Trace_APQ);

Without adding another line of code, every SQL interaction will be captured to trace_file.txt,
which you can inspect when the application completes.

6Unless you have changed the default setting for the object.
7There are Ada95 ways to deal with UNIX signals, which permit an orderly Ada shutdown of your

application.

140 CHAPTER 9. TROUBLESHOOTING

9.6.2 Too Much Trace Output

If your application performs so many SQL operations that the trace file becomes too
large, then disable the tracing until you get to a strategic point in the program:

declare
C : Connection_Type;

begin
...
Connect(C);
Open_DB_Trace(C,”trace_file.txt”,Trace_APQ);
Set_Trace(C,False); -- Disable trace for now..
...
Set_Trace(C,True); -- Start tracing now

The overhead of the Set_Trace primitive is light, unless you have selected Trace_libpq
or Trace_Full (these add the overhead of invoking libpq functions PQtrace() and PQun-
trace()). Light overhead permits you to use Set_Trace within a loop for example, to
gather only the information you need.

9.6.3 Captured SQL Looks OK

If the SQL code captured in section 9.6 looks OK, but the database engine is still
reporting a problem, then try the following:

1. Create a capture file using Trace_APQ.

2. Edit out the portion of the SQL queries in the capture file that you are having
difficulty with.

3. Use the PostgreSQL psql command and replay the extracted problem SQL queries.

4. Edit SQL query and repeat step #3 as necessary.

This allows you to experiment with the SQL text as your applicaton created it. Once
you achieve success with psql, then you can go back and correct your application to
form the query correctly.

9.6.4 You Want to Report a Problem to PostgreSQL

If you want to report a trace file in terms that the PostgreSQL people understand, simply
choose the Trace_libpq trace mode when creating a trace file. Then send them the trace
file with a description of the problem.

9.6.5 Missing Trace Information

The trace information is collected at the Connection_Type object level. Check to see if
you have more than one Connection_Type object involved. If so, make sure you set the
appropriate trace settings on the connections that you want to collect trace information
for.

Note also, that once a Connection_Type object finalizes, its trace file is closed and
its trace state is lost.

9.7. CONNECTION RELATED PROBLEMS 141

9.7 Connection Related Problems

If you are experiencing trouble establishing a connection to the database itself, then
there are a number of environment related issues. A number of environment variables
affect a PostgreSQL database connection:8

PGHOST Host name of the database server

PGPORT IP port number or UNIX socket pathname of the database server

PGDATABASE Database name within the database server

PGUSER Database user name

PGPASSWORD Database password

PGREALM Kerberos realm for the database server

PGOPTIONS Database server options

Any of these connection mode parameters that are not configured in the application are
defaulted to the ones defined by the above environment variables. If you are experi-
encing trouble, make certain that your variables are exported. In many shells, like the
Bourne and Korn shells,9 this is done as follows (for the PGHOST variable):

export PGHOST

Some shells, like the Korn shell and the GNU bash shell, allow multiple variable names
to be listed at once:

export PGHOST PGPORT PGDATABASE PGUSER

Once you have the environment configured correctly, you should be able to access
the database with the PostgreSQL psql command. If the psql10 command still fails,
then you may need to revisit your environment variable settings or possibly even the
database server configuration.11

9.7.1 Connection Cloning Problems

If the original Connection_Type object connects OK, but the Connect clone call fails,
then it could be that the network has gone bad since the original connection was made.
If exceptions other than Not_Connected are being raised, then check that:

� Make sure the parameters are in the correct order in the Connect call.

� Make certain that the connected object, is indeed connected.

� Make certain that the new object is not already connected.

8Check your PostgreSQL documentation for the final word on this subject.
9I won’t encourage anyone here to use the csh.

10Do a “man psql” for details about the psql client command.
11Check the security aspects of your connection first.

142 CHAPTER 9. TROUBLESHOOTING

9.7.2 Connection Tracing

Problem: Your first Connection_Type object is tracing to a file successfully, but the
cloned Connection_Type object is not.

Reason: Cloned connections do not have the trace file parameters cloned. This was
a compromise to make APQ more portable to other platforms that may not share files
well.

Solution: Configure the cloned connection to trace to a file separate from the orig-
inal connection.

Chapter 10

Appendix A - PostgreSQL
Credits

PostgreSQL Decimal C Sources

PostgreSQL Database Management System (formerly known as Postgres, then as Post-
gres95)

� Portions Copyright (c) 1996-2001, The PostgreSQL Global Development Group

� Portions Copyright (c) 1994, The Regents of the University of California

Permission to use, copy, modify, and distribute this software and its documentation for
any purpose, without fee, and without a written agreement is hereby granted, provided
that the above copyright notice and this paragraph and the following two paragraphs
appear in all copies.

IN NO EVENT SHALL THE UNIVERSITY OF CALIFORNIA BE LIABLE TO
ANY PARTY FOR DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSE-
QUENTIAL DAMAGES, INCLUDING LOST PROFITS, ARISING OUT OF THE
USE OF THIS SOFTWARE AND ITS DOCUMENTATION, EVEN IF THE UNI-
VERSITY OF CALIFORNIA HAS BEEN ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

THE UNIVERSITY OF CALIFORNIA SPECIFICALLY DISCLAIMS ANY WAR-
RANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE
SOFTWARE PROVIDED HEREUNDER IS ON AN "AS IS" BASIS, AND THE UNI-
VERSITY OF CALIFORNIA HAS NO OBLIGATIONS TO PROVIDE MAINTE-
NANCE, SUPPORT, UPDATES, ENHANCEMENTS, OR MODIFICATIONS.

143

144 CHAPTER 10. APPENDIX A - POSTGRESQL CREDITS

Modification Notice

The numeric C routines required extensive interface modifications for use in this APQ
Binding. These modified C sources were extracted from the PostgreSQL server project.
No guarantee is made with regard to the quality of these modifications.

Contributor Notice

In no event shall the author or contributors to the APQ Binding be liable to any party
for any cause that the modified PostgreSQL software may cause or contribute to.

Chapter 11

Appendix B - APQ License

Scope of the APQ Binding License

The “APQ Binding” license covers those software modules not provided by or extracted
from the PostgreSQL database software (such as the Decimal C source modules).

APQ Binding License

The APQ Binding is covered under a dual-license arrangement. This should be re-
flected in the file name COPYING. The following two licenses are available:

1. The Ada Community License (ACL).

2. The GNU Public License 2 (GPL2)

One or the other license must be chosen to cover the APQ sources being used. For the
ACL license details, see http://www.adapower.com/booch/ACL/index.
html, file ACL.txt or Appendix C. For details about the GPL license, see Appendix D
or the file GPL.txt that was included with your software.

145

146 CHAPTER 11. APPENDIX B - APQ LICENSE

Chapter 12

Appendix C - Ada Community
License

The Ada Community License
Copyright(C) 1997 David G.
WellerPermission to redistribute in unmodified form is granted, all other rights reserved. This

is a modification of the Perl Artistic License, (c) 1989-1991, Larry Wall

Preamble

The intent of this document is to state the conditions under which the Ada library
may be copied, such that the Copyright Holder maintains some semblance of artistic
control over its development, while giving Ada users the right to use and distribute
the Ada library in a more-or-less customary fashion, plus the right to make reasonable
modifications.

Definitions

"Library" refers to the collection of Ada source files distributed by the " Copyright
Holder, and derivatives of that collection of files created through textual modifi-
cation.

"Standard Version" refers to such a library if it has "Standard Version" not been
modified, or has been modified as specified below.

"Copyright Holder" is whoever is named in the copyright or copyrights for the Ada
library.

"You" is you, if you’re thinking about copying or distributing this library.

"Reasonable Copying Fee" is whatever you can justify on the basis of media cost,
duplication charges, time of people involved, and so on. (You will not be required

147

148 CHAPTER 12. APPENDIX C - ADA COMMUNITY LICENSE

to justify it to the Copyright Holder, but only to the computing community at
large as a market that must bear the fee.)

"Freely Available" means that no fee is charged for the item itself, though there may
be fees involved in handling the item. It also means that recipients of the item
may redistribute it under the same conditions they received it.

Provisions

1. You may make and give away verbatim copies of the source form of the Standard
Version of this Ada library without restriction, provided that you duplicate all of
the original copyright notices and associated disclaimers.

2. You may apply bug fixes, portability fixes and other modifications derived from
the Public Domain or from the Copyright Holder. A library modified in such a
way shall still be considered the Standard Version.

3. You may otherwise modify your copy of this Ada library in any way, provided
that you insert a prominent notice in each changed file stating how and when you
changed that file, and provided that you do at least ONE of the following:

(a) Place your modifications in the Public Domain or otherwise make them
Freely Available, such as by posting said modifications to Usenet or an
equivalent medium, or placing the modifications on a major archive site
such as The Public Ada Library, or by allowing the Copyright Holder to
include your modifications in the Standard Version of the Ada library.

(b) Use the modified Ada library only within your corporation or organization.

(c) Rename any non-standard executables so the names do not conflict with
standard executables, which must also be provided, and provide a separate
manual page for each non-standard executable that clearly documents how
it differs from the Standard Version.

(d) Make other distribution arrangements with the Copyright Holder.

4. You may distribute the programs of this Ada library in object code or executable
form, provided that you do at least ONE of the following:

(a) Distribute a Standard Version of the executables and library files, together
with instructions (in the manual page or equivalent) on where to get the
Standard Version.

(b) Accompany the distribution with the machine-readable source of the Ada
library with your modifications. Accompany any non-standard executables
with their

(c) corresponding Standard Version executables, giving the non-standard ex-
ecutables non-standard names, and clearly documenting the differences in
manual pages (or equivalent), together with instructions on where to get the
Standard Version.

149

(d) Make other distribution arrangements with the Copyright Holder.

5. You may charge a reasonable copying fee for any distribution of this Ada library.
You may charge any fee you choose for support of this Ada library. You may
not charge a fee for this Ada library itself. However, you may distribute this Ada
library in aggregate with other (possibly commercial) programs as part of a larger
(possibly commercial) software distribution provided that you do not advertise
this Ada library as a product of your own.

6. The scripts and library files supplied as input to or produced as output from
the programs of this Ada library do not automatically fall under the copyright
of this Ada library, but belong to whomever generated them, and may be sold
commercially, and may be aggregated with this Ada library.

7. System-level subroutines supplied by you and linked into this Ada library in
order to emulate the functionality defined by this Ada library shall not be con-
sidered part of this Ada library, but are the equivalent of input as in Paragraph
6, provided these subroutines do not change the library in any way that would
cause it to fail the regression tests for the library.

8. The name of the Copyright Holder may not be used to endorse or promote prod-
ucts derived from this software without specific prior written permission.

9. THIS ADA LIBRARY IS PROVIDED "AS IS" AND WITHOUT ANY EX-
PRESS OR IMPLIED WARRANTIES, INCLUDING, WITHOUT LIMITATION,
THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
A PARTICULAR PURPOSE.

How to Apply These Terms to Your New Libraries

To apply these terms, attach the following notices to the library. It is safest to attach
them to the start of each source file to most effectively convey the exclusion of war-
ranty; and each file should have at least the "copyright" line and a pointer to where
the full notice is found. Also, be sure to add information on how to contact you by
electronic and paper mail.

Copyright (C)

This program is free software; you can redistribute it and/or modify it under the terms
of the "Ada Community License" which comes with this Library. This program is dis-
tributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without
even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICU-
LAR PURPOSE. See the Ada Community License for more details. You should have
received a copy of the Ada Community License with this library, in the file named "Ada
Community License" or "ACL". If not, contact the author of this library for a copy.

150 CHAPTER 12. APPENDIX C - ADA COMMUNITY LICENSE

Chapter 13

Appendix D - GNU Public
License

GNU GENERAL PUBLIC LICENSE Version 2, June
1991

Copyright (C) 1989, 1991 Free Software Foundation,

Inc. 59 Temple Place, Suite 330, Boston,

MA 02111-1307 USA

Everyone is permitted to copy and distribute verbatim copies of this license
document, but changing it is not allowed.

Preamble

The licenses for most software are designed to take away your freedom to share and
change it. By contrast, the GNU General Public License is intended to guarantee your
freedom to share and change free software–to make sure the software is free for all its
users. This General Public License applies to most of the Free Software Foundation’s
software and to any other program whose authors commit to using it. (Some other Free
Software Foundation software is covered by the GNU Library General Public License
instead.) You can apply it to your programs, too.

When we speak of free software, we are referring to freedom, not price. Our Gen-
eral Public Licenses are designed to make sure that you have the freedom to distribute
copies of free software (and charge for this service if you wish), that you receive source
code or can get it if you want it, that you can change the software or use pieces of it in
new free programs; and that you know you can do these things.

To protect your rights, we need to make restrictions that forbid anyone to deny you
these rights or to ask you to surrender the rights. These restrictions translate to certain
responsibilities for you if you distribute copies of the software, or if you modify it.

151

152 CHAPTER 13. APPENDIX D - GNU PUBLIC LICENSE

For example, if you distribute copies of such a program, whether gratis or for a fee,
you must give the recipients all the rights that you have. You must make sure that they,
too, receive or can get the source code. And you must show them these terms so they
know their rights.

We protect your rights with two steps:

1. copyright the software, and

2. offer you this license which gives you legal permission to copy, distribute and/or
modify the software.

Also, for each author’s protection and ours, we want to make certain that everyone
understands that there is no warranty for this free software. If the software is modified
by someone else and passed on, we want its recipients to know that what they have
is not the original, so that any problems introduced by others will not reflect on the
original authors’ reputations.

Finally, any free program is threatened constantly by software patents. We wish
to avoid the danger that redistributors of a free program will individually obtain patent
licenses, in effect making the program proprietary. To prevent this, we have made it
clear that any patent must be licensed for everyone’s free use or not licensed at all.

The precise terms and conditions for copying, distribution and modification follow.

GNU GENERAL PUBLIC LICENSE TERMS AND CON-
DITIONS FOR COPYING, DISTRIBUTION AND MOD-
IFICATION

0. This License applies to any program or other work which contains a notice
placed by the copyright holder saying it may be distributed under the terms of
this General Public License. The "Program", below, refers to any such program
or work, and a "work based on the Program" means either the Program or any
derivative work under copyright law: that is to say, a work containing the Pro-
gram or a portion of it, either verbatim or with modifications and/or translated
into another language. (Hereinafter, translation is included without limitation in
the term "modification".) Each licensee is addressed as "you".

Activities other than copying, distribution and modification are not covered by
this License; they are outside its scope. The act of running the Program is not re-
stricted, and the output from the Program is covered only if its contents constitute
a work based on the Program (independent of having been made by running the
Program). Whether that is true depends on what the Program does.

1. You may copy and distribute verbatim copies of the Program’s source code as
you receive it, in any medium, provided that you conspicuously and appropriately
publish on each copy an appropriate copyright notice and disclaimer of warranty;

153

keep intact all the notices that refer to this License and to the absence of any
warranty; and give any other recipients of the Program a copy of this License
along with the Program.

You may charge a fee for the physical act of transferring a copy, and you may at
your option offer warranty protection in exchange for a fee.

2. You may modify your copy or copies of the Program or any portion of it, thus
forming a work based on the Program, and copy and distribute such modifications
or work under the terms of Section 1 above, provided that you also meet all of
these conditions:

a) You must cause the modified files to carry prominent notices stating that
you changed the files and the date of any change.

b) You must cause any work that you distribute or publish, that in whole or in
part contains or is derived from the Program or any part thereof, to be licensed
as a whole at no charge to all third parties under the terms of this License.

c) If the modified program normally reads commands interactively when run,
you must cause it, when started running for such interactive use in the most or-
dinary way, to print or display an announcement including an appropriate copy-
right notice and a notice that there is no warranty (or else, saying that you provide
a warranty) and that users may redistribute the program under these conditions,
and telling the user how to view a copy of this License. (Exception: if the Program
itself is interactive but does not normally print such an announcement, your work
based on the Program is not required to print an announcement.)

These requirements apply to the modified work as a whole. If identifiable sections
of that work are not derived from the Program, and can be reasonably considered
independent and separate works in themselves, then this License, and its terms,
do not apply to those sections when you distribute them as separate works. But
when you distribute the same sections as part of a whole which is a work based on
the Program, the distribution of the whole must be on the terms of this License,
whose permissions for other licensees extend to the entire whole, and thus to each
and every part regardless of who wrote it.

Thus, it is not the intent of this section to claim rights or contest your rights to
work written entirely by you; rather, the intent is to exercise the right to control
the distribution of derivative or collective works based on the Program.

154 CHAPTER 13. APPENDIX D - GNU PUBLIC LICENSE

In addition, mere aggregation of another work not based on the Program with
the Program (or with a work based on the Program) on a volume of a storage
or distribution medium does not bring the other work under the scope of this
License.

3. You may copy and distribute the Program (or a work based on it, under Section
2) in object code or executable form under the terms of Sections 1 and 2 above
provided that you also do one of the following:

a) Accompany it with the complete corresponding machine-readable source
code, which must be distributed under the terms of Sections 1 and 2 above on a
medium customarily used for software interchange; or,

b) Accompany it with a written offer, valid for at least three years, to give any
third party, for a charge no more than your cost of physically performing source
distribution, a complete machine-readable copy of the corresponding source code,
to be distributed under the terms of Sections 1 and 2 above on a medium custom-
arily used for software interchange; or,

c) Accompany it with the information you received as to the offer to distribute
corresponding source code. (This alternative is allowed only for noncommercial
distribution and only if you received the program in object code or executable
form with such an offer, in accord with Subsection b above.)

The source code for a work means the preferred form of the work for making
modifications to it. For an executable work, complete source code means all the
source code for all modules it contains, plus any associated interface definition
files, plus the scripts used to control compilation and installation of the executable.
However, as a special exception, the source code distributed need not include any-
thing that is normally distributed (in either source or binary form) with the major
components (compiler, kernel, and so on) of the operating system on which the ex-
ecutable runs, unless that component itself accompanies the executable.

If distribution of executable or object code is made by offering access to copy
from a designated place, then offering equivalent access to copy the source code
from the same place counts as distribution of the source code, even though third
parties are not compelled to copy the source along with the object code. 4. You
may not copy, modify, sublicense, or distribute the Program except as expressly
provided under this License. Any attempt otherwise to copy, modify, sublicense or
distribute the Program is void, and will automatically terminate your rights under
this License. However, parties who have received copies, or rights, from you under
this License will not have their licenses terminated so long as such parties remain
in full compliance.

155

5. You are not required to accept this License, since you have not signed it. How-
ever, nothing else grants you permission to modify or distribute the Program or
its derivative works. These actions are prohibited by law if you do not accept this
License. Therefore, by modifying or distributing the Program (or any work based
on the Program), you indicate your acceptance of this License to do so, and all
its terms and conditions for copying, distributing or modifying the Program or
works based on it.

6. Each time you redistribute the Program (or any work based on the Program),
the recipient automatically receives a license from the original licensor to copy,
distribute or modify the Program subject to these terms and conditions. You may
not impose any further restrictions on the recipients’ exercise of the rights granted
herein. You are not responsible for enforcing compliance by third parties to this
License.

7. If, as a consequence of a court judgment or allegation of patent infringement or
for any other reason (not limited to patent issues), conditions are imposed on you
(whether by court order, agreement or otherwise) that contradict the conditions
of this License, they do not excuse you from the conditions of this License. If
you cannot distribute so as to satisfy simultaneously your obligations under this
License and any other pertinent obligations, then as a consequence you may not
distribute the Program at all. For example, if a patent license would not permit
royalty-free redistribution of the Program by all those who receive copies directly
or indirectly through you, then the only way you could satisfy both it and this
License would be to refrain entirely from distribution of the Program.

If any portion of this section is held invalid or unenforceable under any particular
circumstance, the balance of the section is intended to apply and the section as a
whole is intended to apply in other circumstances.

It is not the purpose of this section to induce you to infringe any patents or other
property right claims or to contest validity of any such claims; this section has the
sole purpose of protecting the integrity of the free software distribution system,
which is implemented by public license practices. Many people have made gen-
erous contributions to the wide range of software distributed through that system
in reliance on consistent application of that system; it is up to the author/donor to
decide if he or she is willing to distribute software through any other system and
a licensee cannot impose that choice.

This section is intended to make thoroughly clear what is believed to be a conse-
quence of the rest of this License. 8. If the distribution and/or use of the Program
is restricted in certain countries either by patents or by copyrighted interfaces, the
original copyright holder who places the Program under this License may add an

156 CHAPTER 13. APPENDIX D - GNU PUBLIC LICENSE

explicit geographical distribution limitation excluding those countries, so that dis-
tribution is permitted only in or among countries not thus excluded. In such case,
this License incorporates the limitation as if written in the body of this License.

9. The Free Software Foundation may publish revised and/or new versions of the
General Public License from time to time. Such new versions will be similar in
spirit to the present version, but may differ in detail to address new problems or
concerns.

Each version is given a distinguishing version number. If the Program specifies a
version number of this License which applies to it and "any later version", you
have the option of following the terms and conditions either of that version or
of any later version published by the Free Software Foundation. If the Program
does not specify a version number of this License, you may choose any version
ever published by the Free Software Foundation.

10. If you wish to incorporate parts of the Program into other free programs
whose distribution conditions are different, write to the author to ask for permis-
sion. For software which is copyrighted by the Free Software Foundation, write to
the Free Software Foundation; we sometimes make exceptions for this. Our deci-
sion will be guided by the two goals of preserving the free status of all derivatives
of our free software and of promoting the sharing and reuse of software generally.

NO WARRANTY

11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS
NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING
THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE THE
PROGRAM "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EX-
PRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IM-
PLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PAR-
TICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PER-
FORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE PROGRAM
PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SER-
VICING, REPAIR OR CORRECTION.

12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED
TO IN WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY
WHO MAY MODIFY AND/OR REDISTRIBUTE THE PROGRAM AS PER-
MITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARIS-
ING OUT OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUD-
ING BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING RENDERED
INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR

157

A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PRO-
GRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN AD-
VISED OF THE POSSIBILITY OF SUCH DAMAGES.

END OF TERMS AND CONDITIONS

How to Apply These Terms to Your New Programs

If you develop a new program, and you want it to be of the greatest possible use to
the public, the best way to achieve this is to make it free software which everyone can
redistribute and change under these terms.

To do so, attach the following notices to the program. It is safest to attach them to
the start of each source file to most effectively convey the exclusion of warranty; and
each file should have at least the "copyright" line and a pointer to where the full notice
is found.

<one line to give the program’s name and a brief idea of what it does.>
Copyright (C) <year> <name of author>
This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version.
This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.
You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA

Also add information on how to contact you by electronic and paper mail.
If the program is interactive, make it output a short notice like this when it starts in

an interactive mode:

Gnomovision version 69, Copyright (C) year name of author Gnomovision comes with ABSOLUTELY NO WARRANTY; for details type ‘show w’. This is free software, and you are welcome to redistribute it under certain conditions; type ‘show c’ for details.

The hypothetical commands ‘show w’ and ‘show c’ should show the appropriate parts
of the General Public License. Of course, the commands you use may be called some-
thing other than ‘show w’ and ‘show c’; they could even be mouse-clicks or menu
items–whatever suits your program.

You should also get your employer (if you work as a programmer) or your school,
if any, to sign a "copyright disclaimer" for the program, if necessary. Here is a sample;
alter the names:

Yoyodyne, Inc., hereby disclaims all copyright interest in the program ‘Gnomovision’ (which makes passes at compilers) written by James Hacker.
<signature of Ty Coon>, 1 April 1989 Ty Coon, President of Vice

This General Public License does not permit incorporating your program into propri-
etary programs. If your program is a subroutine library, you may consider it more
useful to permit linking proprietary applications with the library. If this is what you
want to do, use the GNU Library General Public License instead of this License.

158 CHAPTER 13. APPENDIX D - GNU PUBLIC LICENSE

Chapter 14

Appendix E - Credits

This appendix documents the contributors to the “APQ Binding” that are separate from
the PostgreSQL project.

Author

Warren W. Gay VE3WWG
29 Glen Park Road,
St. Catharines, Ontario
Canada L2N 3E3

ve3wwg@cogeco.ca

Contributions

Source Code Modifications

There are no other contributors at the present time.

Bug Reports
� There appears to be a problem with win32 releases using PostgreSQL 7.2.1,

where specifying the database server by IP # creates a problem. The problem is
believed to be in libpq.dll.

Suggestions

None yet.

159

160 CHAPTER 14. APPENDIX E - CREDITS

Bug Report/Fix Contributions
� Charles Darcy <charlie@mullum.com.au>, November 23, 2002

Chapter 15

Appendix F - History

APQ 1.0

First released August 3, 2002, under the Ada Community License (ACL).

APQ 1.1

Second release August 4, 2002, but now under the dual ACL and GPL21 license. This
license change was suggested by Florian Weimer.

APQ 1.2
� Added function End_Of_Blob to streamline sequential processing.

� Added buffered blob I/O for higher performance.

� Added procedure Blob_Flush to force unwritten blob data to the database server.

� Blob_Create has new optional Buf_Size argument.

� Blob_Open has new optional Buf_Size argument.

� Fixed Blob_Create to release the created blob, if the blob cannot be opened. This
most often happens when the caller is attempting to create a blob, outside of a
transaction.

APQ 1.3
� Removed some debug Put_Line statements that should have been removed in

1.2.
1GNU Public License 2

161

162 CHAPTER 15. APPENDIX F - HISTORY

� Added a few pragma Inline statements to the spec PostgreSQL.Client

APQ 1.4
� Added Generic_Command_Oid for strong PG_Oid type use

� Added Generic_Blob_Open for strong PG_Oid type use

� Added Generic_Blob_Oid function for strong PG_Oid type use

� Added Generic_Blob_Unlink for strong PG_Oid type use

� Added Generic_Blob_Import and Generic_Blob_Export for strong PG_Oid type
use

APQ 1.5
� Bug fix: Append_Time, Append_Date and Append_Timestamp now emit the

surrounding single quote characters around the value to satisfy the SQL syntax
required by the database server.

� Troubleshooting help added to this manual for “Missing Time Data (Or Time is
00:00:00)”.

APQ 1.6
� Added Set_Rollback_On_Finalize controlling primitive for Connection_Type.

� Added Will_Rollback_On_Finalize function for Connection_Type for inquiry.

� Expanded manual and added transaction problem help to the Troubleshooting
chapter.

APQ 1.7
� Open_DB_Trace and Close_DB_Trace procedures added.

� Set_Trace procedure added to enable and disable tracing.

� Is_Trace function added to query the tracing state.

APQ 1.8
� Connection information functions like Host_Name and Port were added.

� A connection cloning primitive was added.

163

APQ 1.9
� A compiler work-around was provided. Some versions of GNAT would not com-

pile the APQ source code, because certain instantiations of Ada.Text_IO.Integer_IO
were producing duplicate symbol errors in the assembler phase of the compile.
This problem was absent in gnat 3.13p compiles, but have shown up in gcc-3.1.1
and probably in gnat 3.14p and later releases. The instantiation names INTIO
were made unique within the source code to avoid this problem.

APQ 1.91
� The Connect call now performs an automatic “SET DATESTYLE TO ISO” com-

mand prior to returning from a successful connect. This is necessary to guarantee
that ISO date format is returned from the database engine and recognized from
the engine. This guarantees that APQ correctly handles dates, even when the user
has specified a PGDATESTYLE environment variable value that is different than
ISO.

� Fixed bug in Host_Name function. It was returning a null string when a host
name was set in the Connection_Type object.

� Win32 apq-1.91 source release (subdirectory win32) and apq-1.91-win32-2.7.1
binary release created.

APQ 1.92
� Fixed bug for floating point and fixed point types (was rounding the value to

the nearest integer, due to the fact that the Ada.Text_IO.Float_IO.Put call was
receiving the argument Aft => 0). Omitting the Aft parameter causes the value
to be formatted as required for the SQL floating/fixed point type. The bug was
reported by Charles Darcy <charlie@mullum.com.au>.

APQ 1.93
� Modified the Ada95 package hierarchy to insert a top level package named APQ.

Hence package PostgreSQL now becomes APQ.PostgreSQL. This is an interim
release, which will pave the way to future support of other database products
such as MySQL.

APQ 2.0
� MySQL support added. This was made possible by the package restructuring

done in the interim release APQ 1.93.

164 CHAPTER 15. APPENDIX F - HISTORY

� Generic database programming support added. Special generic services like En-
gine_Of, New_Query etc. were added to make this possible. A heavy reliance is
made upon object inheritance and polymorphism to make this work.

� A new example subdirectory eg2 was added. The programs in this subdirectory
show the original example program, but done in a database generic way. The test
program can be compiled and run for both PostgreSQL and MySQL databases.

� PG_Oid is now named APQ_Row_ID and is 64 bits unsigned integer.

� Null_Oid() function added for generic database support (and much more).

� Engine_Of() function added for generic database support.

� Exception “Failed” was added to handle some general failures.

� Fetch_Mode() and Set_Fetch_Mode() were added to accommodate MySQL lim-
itations.

� Documentation went through some restructuring to accomodate two databases,
and their differences.

APQ 2.1
� This was the win32 port.

� See win32.pdf for instructions for building APQ on a win32 platform.

� win32_test.adb program was added to the distribution to allow testing of APQ in
the windows environment.

