
AdaControl User Guide

1

Last edited: 3 August 2010

AdaControl is Copyright c© 2005-2010 Eurocontrol/Adalog, except for some specific modules
that are c© 2006 Belgocontrol/Adalog, c© 2006 CSEE/Adalog, or c© 2006 SAGEM/Adalog.
AdaControl is free software; you can redistribute it and/or modify it under terms of the GNU
General Public License as published by the Free Software Foundation; either version 2, or (at
your option) any later version. This unit is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
details. You should have received a copy of the GNU General Public License distributed with
this program; see file COPYING. If not, write to the Free Software Foundation, 59 Temple Place
- Suite 330, Boston, MA 02111-1307, USA.

As a special exception, if other files instantiate generics from this program, or if you link
units from this program with other files to produce an executable, this does not by itself cause
the resulting executable to be covered by the GNU General Public License. This exception does
not however invalidate any other reasons why the executable file might be covered by the GNU
Public License.

This document is Copyright c© 2005-2010 Eurocontrol/Adalog. This document may be
copied, in whole or in part, in any form or by any means, as is or with alterations, provided
that (1) alterations are clearly marked as alterations and (2) this copyright notice is included
unmodified in any copy.

i

Table of Contents

1 Introduction . 2
1.1 Features . 2
1.2 History . 3

2 Installation . 4
2.1 Building AdaControl from source . 4

2.1.1 Prerequisites . 4
2.1.2 Build with installer (Windows) . 4
2.1.3 Build with project file . 4
2.1.4 Build with Makefile . 4
2.1.5 Build with a compiler other than Gnat . 5
2.1.6 Testing AdaControl . 5
2.1.7 Customizing AdaControl . 5

2.2 Installing AdaControl . 6
2.3 Installing support for GPS . 6
2.4 Installing support for AdaGide . 6

3 Program Usage . 7
3.1 Command line parameters and options . 7

3.1.1 Input units . 7
3.1.2 Commands . 8
3.1.3 Output file . 8
3.1.4 Output format . 9
3.1.5 Output limits . 9
3.1.6 Project files . 9
3.1.7 Local disabling control . 9
3.1.8 Verbose and debug mode . 10
3.1.9 Treatment of warnings . 10
3.1.10 Exit on error . 10
3.1.11 ASIS options . 10

3.2 Return codes . 11
3.3 Environment variable and default settings . 11
3.4 Interactive mode . 11
3.5 Other execution modes . 11

3.5.1 Getting help . 11
3.5.2 Checking commands syntax . 12
3.5.3 Generating a units list . 12

3.6 Running AdaControl from GPS . 13
3.6.1 The AdaControl menu and buttons . 13
3.6.2 Contextual menu . 14
3.6.3 AdaControl switches . 14

3.6.3.1 Files . 14
3.6.3.2 Processing . 15
3.6.3.3 Debug . 15
3.6.3.4 Output . 15
3.6.3.5 ASIS . 16

3.6.4 AdaControl preferences . 16

ii

3.6.5 AdaControl language . 16
3.6.6 AdaControl help . 17
3.6.7 Caveat . 17

3.7 Running AdaControl from AdaGide . 17
3.8 Helpful utilities . 17

3.8.1 pfni . 17
3.8.2 makepat.sed . 18
3.8.3 unrepr.sed . 18

3.9 Optimizing Adacontrol . 18
3.9.1 Tree files and the ASIS context . 19
3.9.2 Generating tree files manually . 19
3.9.3 Choosing an appropriate combination of options . 20

3.10 In case of trouble . 20
3.10.1 Known issues . 20
3.10.2 AdaControl or ASIS failure . 21

4 Command language reference . 22
4.1 General . 22
4.2 Controls . 22

4.2.1 Control kinds and report messages . 23
4.2.2 Parameters . 24
4.2.3 Multiple controls . 24
4.2.4 Disabling controls . 25

4.2.4.1 Block disabling . 25
4.2.4.2 Line disabling . 25

4.2.5 Limitation . 26
4.3 Other commands . 26

4.3.1 Go command . 26
4.3.2 Quit command . 26
4.3.3 Message command . 26
4.3.4 Help command . 27
4.3.5 Clear command . 27
4.3.6 Set command . 27
4.3.7 Source command . 28
4.3.8 Inhibit command . 28

4.4 Example of commands . 29

5 Rules reference . 30
5.1 Abnormal Function Return . 30

5.1.1 Syntax . 30
5.1.2 Action . 30
5.1.3 Tip . 30

5.2 Allocators . 30
5.2.1 Syntax . 30
5.2.2 Action . 31
5.2.3 Tips . 31

5.3 Array Declarations . 31
5.3.1 Syntax . 31
5.3.2 Action . 31
5.3.3 Tips . 33

5.4 Barrier Expressions . 33
5.4.1 Syntax . 33
5.4.2 Action . 34

iii

5.4.3 Tips . 34
5.5 Case Statement . 35

5.5.1 Syntax . 35
5.5.2 Action . 35
5.5.3 Tips . 35
5.5.4 Limitations . 35

5.6 Characters . 35
5.6.1 Syntax . 35
5.6.2 Action . 36
5.6.3 Limitations . 36

5.7 Comments . 36
5.7.1 Syntax . 36
5.7.2 Action . 36
5.7.3 Tips . 38
5.7.4 Limitations . 38

5.8 Declarations . 38
5.8.1 Syntax . 38
5.8.2 Action . 39
5.8.3 Tips . 43
5.8.4 Limitation . 43

5.9 Default Parameter . 43
5.9.1 Syntax . 43
5.9.2 Action . 43
5.9.3 Tip . 44

5.10 Dependencies . 44
5.10.1 Syntax . 44
5.10.2 Action . 44

5.11 Directly Accessed Globals . 45
5.11.1 Syntax . 45
5.11.2 Action . 45
5.11.3 Tips . 45
5.11.4 Limitations . 46

5.12 Duplicate Initialization Calls . 46
5.12.1 Syntax . 46
5.12.2 Action . 46
5.12.3 Limitation . 46

5.13 Entities . 46
5.13.1 Syntax . 46
5.13.2 Action . 46
5.13.3 Tips . 47
5.13.4 Limitation . 47

5.14 Entity Inside Exception . 47
5.14.1 Syntax . 47
5.14.2 Action . 47

5.15 Exception Propagation . 48
5.15.1 Syntax . 48
5.15.2 Action . 48
5.15.3 Tips . 49
5.15.4 Limitations . 50

5.16 Expressions . 50
5.16.1 Syntax . 50
5.16.2 Action . 50
5.16.3 Tips . 52

5.17 Global References . 52

iv

5.17.1 Syntax . 52
5.17.2 Action . 53
5.17.3 Tips . 53
5.17.4 Limitations . 54

5.18 Header Comments . 54
5.18.1 Syntax . 54
5.18.2 Action . 54
5.18.3 Tips . 55
5.18.4 Limitation . 55

5.19 Improper Initialization . 56
5.19.1 Syntax . 56
5.19.2 Action . 56
5.19.3 Limitations . 57

5.20 Instantiations . 57
5.20.1 Syntax . 57
5.20.2 Action . 57
5.20.3 Tips . 59
5.20.4 Limitation . 59

5.21 Insufficient Parameters . 59
5.21.1 Syntax . 59
5.21.2 Action . 59
5.21.3 Tips . 60

5.22 Local Hiding . 60
5.22.1 Syntax . 60
5.22.2 Action . 60

5.23 Max Blank Lines . 60
5.23.1 Syntax . 60
5.23.2 Action . 61

5.24 Max Call Depth . 61
5.24.1 Syntax . 61
5.24.2 Action . 61
5.24.3 Tip . 61
5.24.4 Limitations . 61

5.25 Max Line Length . 62
5.25.1 Syntax . 62
5.25.2 Action . 62

5.26 Max Nesting . 62
5.26.1 Syntax . 62
5.26.2 Action . 62

5.27 Max Size . 62
5.27.1 Syntax . 62
5.27.2 Action . 62

5.28 Max Statement Nesting . 63
5.28.1 Syntax . 63
5.28.2 Action . 63

5.29 Movable Accept Statements . 63
5.29.1 Syntax . 63
5.29.2 Action . 63
5.29.3 Tips . 64

5.30 Multiple Assignments . 64
5.30.1 Syntax . 64
5.30.2 Action . 64
5.30.3 Tip . 65
5.30.4 Limitations . 65

v

5.31 Naming Convention . 65
5.31.1 Syntax . 65
5.31.2 Action . 67
5.31.3 Tips . 68
5.31.4 Limitations . 69

5.32 No Operator Usage . 69
5.32.1 Syntax . 69
5.32.2 Action . 69
5.32.3 Tips . 69

5.33 Non Static . 70
5.33.1 Syntax . 70
5.33.2 Action . 70
5.33.3 Limitations . 70
5.33.4 Tips . 70

5.34 Not Elaboration Calls . 70
5.34.1 Syntax . 70
5.34.2 Action . 70
5.34.3 Limitations . 71

5.35 Not Selected Name . 71
5.35.1 Syntax . 71
5.35.2 Action . 71
5.35.3 Tip . 71

5.36 Object Declarations . 71
5.36.1 Syntax . 71
5.36.2 Action . 72
5.36.3 Tip . 72
5.36.4 Limitation . 72

5.37 Parameter Aliasing . 72
5.37.1 Syntax . 72
5.37.2 Action . 72
5.37.3 Limitation . 73

5.38 Parameter Declarations . 74
5.38.1 Syntax . 74
5.38.2 Action . 74
5.38.3 Tips . 74

5.39 Potentially Blocking Operations . 75
5.39.1 Syntax . 75
5.39.2 Action . 75
5.39.3 Tips . 75
5.39.4 Limitation . 75

5.40 Pragmas . 75
5.40.1 Syntax . 75
5.40.2 Action . 75
5.40.3 Tips . 76

5.41 Record Declarations . 76
5.41.1 Syntax . 76
5.41.2 Action . 76
5.41.3 Tips . 77
5.41.4 Limitations . 77

5.42 Reduceable Scope . 77
5.42.1 Syntax . 77
5.42.2 Action . 78
5.42.3 Tips . 78
5.42.4 Limitation . 78

vi

5.43 Representation Clauses . 78
5.43.1 Syntax . 78
5.43.2 Action . 79
5.43.3 Limitation . 80
5.43.4 Tips . 80

5.44 Return Type . 80
5.44.1 Syntax . 80
5.44.2 Action . 80
5.44.3 Limitations . 81

5.45 Side Effect Parameters . 81
5.45.1 Syntax . 81
5.45.2 Action . 81
5.45.3 Limitation . 82

5.46 Silent Exceptions . 82
5.46.1 Syntax . 82
5.46.2 Action . 82
5.46.3 Limitations . 83

5.47 Simplifiable Expressions . 84
5.47.1 Syntax . 84
5.47.2 Action . 84
5.47.3 Tips . 84

5.48 Simplifiable Statements . 85
5.48.1 Syntax . 85
5.48.2 Action . 85
5.48.3 Tips . 87

5.49 Statements . 87
5.49.1 Syntax . 87
5.49.2 Action . 87
5.49.3 Tips . 89

5.50 Style . 89
5.50.1 Syntax . 89
5.50.2 Action . 90
5.50.3 Tips . 93
5.50.4 Limitations . 93

5.51 Terminating Tasks . 94
5.51.1 Syntax . 94
5.51.2 Action . 94
5.51.3 Tips . 94

5.52 Type Initial Values . 94
5.52.1 Syntax . 94
5.52.2 Action . 94

5.53 Uncheckable . 94
5.53.1 Syntax . 94
5.53.2 Action . 95
5.53.3 Tips . 95
5.53.4 Limitation . 95

5.54 Units . 95
5.54.1 Syntax . 95
5.54.2 Action . 95
5.54.3 Tip . 96

5.55 Unnecessary Use Clause . 96
5.55.1 Syntax . 96
5.55.2 Action . 96
5.55.3 Tip . 97

vii

5.55.4 Limitations . 97
5.56 Unsafe Paired Calls . 97

5.56.1 Syntax . 97
5.56.2 Action . 97
5.56.3 Tips . 99
5.56.4 Limitation . 99

5.57 Unsafe Unchecked Conversion . 99
5.57.1 Syntax . 99
5.57.2 Action . 99
5.57.3 Limitation . 100

5.58 Usage . 100
5.58.1 Syntax . 100
5.58.2 Action . 100
5.58.3 Tips . 102
5.58.4 Limitations . 102

5.59 Use Clauses . 102
5.59.1 Syntax . 103
5.59.2 Action . 103

5.60 With Clauses . 103
5.60.1 Syntax . 103
5.60.2 Action . 103
5.60.3 Tips . 104

6 Examples of using AdaControl for common programming
rules . 105

6.1 Migrating from Gnatcheck . 105
6.2 Rules files provided with AdaControl . 105
6.3 Automatically checkable rules . 106
6.4 Rules that need manual inspection . 108

Appendix A Specifying an Ada entity name 110
A.1 General syntax . 110
A.2 Overloaded names . 110
A.3 Enumeration literals . 111
A.4 Operators . 111
A.5 Attributes . 111
A.6 Anonymous constructs . 112
A.7 Record and protected types components . 112
A.8 Formals of access to subprogram types . 112
A.9 Limitation . 112

Appendix B Syntax of regular expressions 113

viii

Appendix C Non upward-compatible changes 115
C.1 Migrating from 1.11r4 . 115

C.1.1 Expressions . 115
C.1.2 Special Comments . 115

C.2 Migrating from 1.10r10 . 115
C.2.1 GPS integration . 115
C.2.2 Representation Clauses . 115

C.3 Migrating from 1.9r4 . 115
C.3.1 Array Declarations . 115
C.3.2 Declarations . 116
C.3.3 Default Parameter . 116
C.3.4 Improper Initialization . 116

C.4 Migrating from 1.8r8 . 116
C.4.1 CSV(X) format . 116
C.4.2 Default Parameter . 117
C.4.3 Other Dependencies . 117
C.4.4 Special Comments . 117
C.4.5 Statements . 117

C.5 Migrating from 1.7r9 . 117
C.5.1 Case Statement . 117
C.5.2 Max Parameters . 117

C.6 Migrating from 1.6r8 . 118
C.6.1 “message” command . 118
C.6.2 “source” command . 118
C.6.3 Control Characters . 118
C.6.4 If For Case . 118
C.6.5 Instantiations . 118
C.6.6 Local Instantiation . 118
C.6.7 Naming Convention . 118
C.6.8 No Safe Initialization . 119
C.6.9 Special Comments . 119
C.6.10 Statements . 119

C.7 Migrating from 1.5r24 . 119
C.7.1 Declarations . 119
C.7.2 Naming Convention . 119
C.7.3 Non Static Constraint . 119
C.7.4 Positional Parameters . 120
C.7.5 Real Operator . 120
C.7.6 Style . 120

C.8 Migrating from 1.4r20 . 120
C.8.1 GPS integration . 120
C.8.2 Declarations . 121
C.8.3 Header Comments . 121
C.8.4 No Closing Name . 121
C.8.5 Specification Objects . 121
C.8.6 Statement . 121
C.8.7 When Others Null . 121

Chapter 1: Introduction 2

1 Introduction

AdaControl is an Ada rules controller. It is used to control that Ada software meets the re-
quirements of a number of parameterizable rules. It is not intended to supplement checks made
by the compiler, but rather to search for particular violations of good-practice rules, or to check
that some rules are obeyed project-wide. AdaControl can also be handy to make statistics
about certain usages of language features, or simply to search for the occurrences of particular
constructs; its scope is therefore not limited to enforcing programming rules, although it is of
course one of its main goals.

Commercial support is available for AdaControl, see file doc/support.txt. If you plan to
use AdaControl for industrial projects, or if you want it to be customized or extended to match
your own needs, please contact Adalog at info@adalog.fr.

1.1 Features

AdaControl analyzes a set of Ada units, according to parameterizable controls. Controls can
be given from the command line, from a file, or interactively. There is a wide range of controls
available. Some are quite simple (although very useful):

• Control physical layout of the program (Maximum line length, no use of tabulations...)

• Control occurences of special strings in comments (like TBD for “To Be Defined”), with
full wildcarding.

• Use of features (goto statement, tasking, pointers, variables in package specifications...)

• Use of any declared entity, with full overloading resolution

Other rules are quite sophisticated:

• Control series of “if”...”elsif” that could be replaced by “case” statements

• Verify usage of declarations (variables that should be constant, variables read but not
written...)

• Control declarations that could be moved to a more reduced, internal scope

• Limit the call depth of a program (and diagnose recursive subprograms)

• Enforce a pattern that guarantees that exceptions are not handled silently

• Enforce a pattern for paired calls (like semaphore’s “P” and “V”) that guarantees that the
closing call is always executed, even in presence of exceptions.

• Check that there is no aliasing between out parameters

• Ensure that no protected operation calls a potentially blocking operation

and much, much more... See Chapter 5 [Rules reference], page 30 for the complete reference
for all possible controls.

AdaControl is very simple to use. It takes, as parameters, a list of units to process and a
list of commands that define the controls to apply. The complete syntax of the commands is
described in chapter Chapter 4 [Command language reference], page 22.

AdaControl produces messages to the standard output, unless redirected. Several levels of
messages are defined (i.e. error or found), depending on the kind of the control (i.e. check or
search).

Rules can be locally disabled for a part of the source code, and various options can be passed
to the program.

Ex:

Given the following package:

mailto::info@adalog.fr

Chapter 1: Introduction 3

package Pack is
pragma Pure (Pack);

...

end Pack;

The following command:

adactl -l "search pragmas (pure)" pack

produces the following result (displayed to standard output):

pack.ads:2:4: Found: PRAGMAS: use of pragma Pure

AdaControl integrates nicely in environments such as GPS (see Section 3.6 [Running Ada-
Control from GPS], page 13), AdaGide (see Section 3.7 [Running AdaControl from AdaGide],
page 17), or emacs (see Section 4.2.1 [Control kinds and report messages], page 23). In those
environments, you can run AdaControl from menus or by just clicking on a button!

1.2 History

The development of AdaControl was initially funded by Eurocontrol
(http://www.eurocontrol.int), which needed a tool to help in verifying the mil-
lion+ lines of code that does Air Traffic Flow Management over Europe. Because it was
felt that such a tool would benefit the community at-large, and that further improvements
made by the community would benefit Eurocontrol, it was decided to release AdaControl as
free software. Later, Eurocontrol, Belgocontrol, Ansaldo (formerly CSEE-Transport), and
SAGEM-DS sponsored the development of more rules.

The requirements for AdaControl were written by Philippe Waroquiers (Eurocontrol-
Brussels), who also conducted extensive testing of AdaControl over the Eurocontrol software.
The software was developped by Arnaud Lecanu and Jean-Pierre Rosen (Adalog). Rules, im-
provements, etc. were contributed by Pierre-Louis Escouflaire (Adalog), Alain Fontaine (ABF
consulting), Richard Toy (Eurocontrol-Maastricht), and Isidro Ilasa Veloso (GMV). AdaGide
support and improvement of icons were contributed by Gautier de Montmollin. Emmanuel
Masker (Alstom) and Yannick Duchene contributed to GPS integration.

See file HISTORY for a description of the various versions of AdaControl, including enhance-
ments of the current version over the previous ones. Users of a previous version are warned that
the rules are not 100% upward-compatible: this is necessary to make the rules more consistent
and easier to use. However, the incompatibilities are straightforward to fix and should affect
only a very limited number of files. See Appendix C [Non upward-compatible changes], page 115
for details.

http://www.eurocontrol.int

Chapter 2: Installation 4

2 Installation

Like any ASIS application, AdaControl can be run only if the compiler available on the system
has exactly the same version as the one used to compile AdaControl itself. The executable
distribution of AdaControl will work only with Gnat version GPL 2010, as distributed by ACT.
If you are using any other version, please use the source distribution of AdaControl and compile
it as indicated below.

Another reason for using the source distribution of AdaControl is that the user may not be
interested in all provided rules. It is very easy to remove some rules from AdaControl to increase
its speed. See [Customizing AdaControl], page 5.

2.1 Building AdaControl from source

This section is only for the source distribution of AdaControl. If you downloaded an executable
distribution (and are using Gnat GPL 2010), you may skip to the next section.

2.1.1 Prerequisites

The following software must be installed in order to compile AdaControl from source:

• A GNAT compiler, any version. Note that the compiler must also be available on the
machine in order to run AdaControl (all ASIS application need the compiler).

• ASIS for GNAT

Make sure to have the same version of GNAT and ASIS. The version used for running
AdaControl must be the same as the one used to compile AdaControl itself.

2.1.2 Build with installer (Windows)

Run the installer (adactl_src-setup.exe). This will automatically build and install AdaCon-
trol, no other installation is necessary.

2.1.3 Build with project file

Simply go to the src directory and type:

gnatmake -Pbuild.gpr

You’re done!

Caveat: Due to a bug in recent versions, if you are using GnatPro 6.1.2 and above, you must
set the variable GNAT FIX to 1; i.e. invoke the command as:

gnatmake -Pbuild.gpr -XGNAT_FIX=1

2.1.4 Build with Makefile

The previous method may fail if Asis is not installed in an usual place. As an alternative method,
it is possible to build AdaControl with a regular Makefile.

The file Makefile (in directory src) should be modified to match the commands and paths
of the target system. The following variables are to be set:

• ASIS TOP

• ASIS INCLUDE

• ASIS OBJ

• ASIS LIB

• RM

• EXT

Chapter 2: Installation 5

How to set these variables properly is documented in Makefile. See also the compilation
options in this file; a change is needed if you are using GnatPro 6.1.2 and above.

Then, run the make command:

$ cd src

$ make build

It is also possible to delete object files and do other actions with this “Makefile”, run the
following command to get more information:

$ make help

NOTE: Building AdaControl needs the “make” command provide with GNAT; it works both
with WIN32 shell and UNIX shell.

2.1.5 Build with a compiler other than Gnat

It should be possible to compile AdaControl with other compilers than GNAT, although we
didn’t have an opportunity to try it. If you have another compiler that supports ASIS, note
that it may require some easy changes in the package Implementation_Options to give proper
parameters to the Associate procedure of ASIS. Rules that need string pattern matchings
need the package Gnat.Regpat. If you compile AdaControl with another compiler, you can
either port Gnat.Regpat to your system, or use a (limited) portable implementation of a simple
pattern matching (package String_Matching_Portable). Edit the file string_matching.ads

and change it as indicated in the comments. No other change should be necessary.

Alternatively, if you are using another compiler, you can try and compile your program with
GNAT just to be able to run AdaControl. However, compilers often differ in their support of
representation clauses, which can cause your program to be rejected by GNAT. In that case, we
provide a sed script to comment-out all representation clauses; this can be sufficient to allow
you to use AdaControl. See Section 3.8.3 [unrepr.sed], page 18.

2.1.6 Testing AdaControl

Testing AdaControl needs a UNIX shell, so it works only with UNIX systems. However, it is
possible to run the tests on a WIN32 system by using an UNIX-like shell for WIN32, such as
those provided by CYGWIN or MSYS. To run the tests, enter the following commands:

$ cd test

$./run.sh

All tests must report PASSED. If they don’t, it may be due to one of the following issues:

• You are using an old version of Gnat. AdaControl runs without any known problem (and it
has been checked against the whole ACATS) only with the latest GnatPro and GnatGPL
versions; earlier versions are known to have bugs and unimplemented features that will not
allow AdaControl to run correctly in some cases. We strongly recommend to always use
the most recent version of Gnat.

• You run a recent version of GnatPro (6.1.2 and above) and you forgot to specify the “-
XGNAT FIX=1” option. See [Build with project file], page 4.

• It may happen that the test tfw_check reports “FAILED” on some sytems, because it
depends on the order in which the operating system lists files. If this happens, try (from
the test directory):

diff res/tfw_check.txt ref/

If the only difference is that some lines are at different places, the test is OK.

2.1.7 Customizing AdaControl

If there are some rules that you are not interested in, it is very easy to remove them from
AdaControl:

Chapter 2: Installation 6

1. In the src directory, edit the file framework-plugs.adb. There is a with clause for each
rule (children of package Rules). Comment out the ones you don’t want.

2. Recompile framework-plugs.adb. There will be error messages about unknown procedure
calls. Comment out the corresponding lines.

3. Compile AdaControl normally. That’s all!

It is also possible to add new rules to AdaControl. If your favorite rules are not currently
supported, you have several options:

1. If you have some funding available, please contact info@adalog.fr. We’ll be happy to make
an offer to customize AdaControl to your needs.

2. If you don’t have funding, but have some knowledge of ASIS programming, you can add the
rule yourself. We have made every effort to make this as simple as possible. Please refer to
the AdaControl programmer’s manual for details. If you do so, please send your rules to
rosen@adalog.fr, and we’ll be happy to integrate them in the general release of AdaControl
to make them available to everybody.

3. If you have good ideas, but don’t feel like implementing them yourself (nor financing them),
please send a note to rosen@adalog.fr. We will eventually incorporate all good suggestions,
but we can’t of course commit to any dead-line in that case.

2.2 Installing AdaControl

All you need to run AdaControl is the executable named adactl under Linux or adactl.exe
under Windows. In addition, pfni (or pfni.exe under Windows) is a convenient utility, required
by the GPS support. See Section 3.8.1 [pfni], page 17.

If you downloaded the Windows installer executable version of AdaControl, simply run
adactl_exe-setup.exe. This will install all the files in the recommended locations (as has
been done with the Windows installer source version), including GPS support if you have GPS
installed and/or AdaGide support if you have AdaGide installed.

If you built AdaControl from source without an installer, the executables are in the src

directory of the distribution. If you downloaded an executable distribution, they are in the root
directory of the distribution. Copy the executables to any convenient directory on your path; a
good place, for example, is in the bin directory of your Gnat installation.

2.3 Installing support for GPS

Integration of AdaControl into GPS with all functionalities requires GPS version 4.2 or above
(delivered since GNAT/GPL2008).

To add AdaControl support to GPS, copy the file GPS/adacontrol.xml into the <GNAT_

dir>/share/gprconfig directory; copy all other files from the GPS directory into the <GPS_

dir>/share/gps/plug-ins directory. Copy also HTML files from the doc directory into the
<GPS_dir>/share/doc/gps/html to access AdaControl’s guides from the "Help" menu of GPS.

2.4 Installing support for AdaGide

To add AdaControl support to AdaGide, copy the file AdaControl.tdf from the AdaGide di-
rectory into AdaGide’s root directory. Note that AdaControl support requires AdaGide version
7.42 or above.

mailto::info@adalog.fr
mailto::rosen@adalog.fr
mailto::rosen@adalog.fr

Chapter 3: Program Usage 7

3 Program Usage

AdaControl is a command-line program, i.e. it is normally called directly from the system shell.
Options are introduced by a “-” followed by a letter and can be grouped as usual. Some options
take the following word on the command line as a value; such options must appear last in a
group of options. Parameters are words on the command line that stand by themselves. Options
and parameters can be given in any order.

The syntax for invoking AdaControl in regular mode is:

adactl [-deEirsTuvwx]

[-p <project file>] [-f <rules file>] [-l <rules list>]

[-o <output file>] [-t <trace file>] [-F <format>]

[-S <statistics level>] [-m <warning limit>] [-M <message limit>]

{<unit>[+|-<unit>]|[@]<file>} [-- <ASIS options>]

AdaControl can process only Ada-95, not Ada-2005, since there no ASIS for Ada-2005 yet.
If you are using a version of GNAT where Ada-2005 is the default (especially GNAT-GPL),
and in the rare cases where your program would not compile in Ada-2005 mode (notably if you
have a function that returns a task type), you must force Ada-95 mode by having a “gnat.adc”
file that contains a pragma Ada_95, since the corresponding option cannot be passed to the
compiler in “compile on the fly” mode. Alternatively, you can generate the tree files manually
(see Section 3.9.2 [Generating tree files manually], page 19) with the “-gnat95” option.

3.1 Command line parameters and options

3.1.1 Input units

Units to be processed are given as parameters on the command line. Note that they are Ada
compilation unit names, not file names: case is not significant, and there should be no extension!
Child units are allowed following normal Ada naming rules: Parent.Child, but be aware that
specifying a child unit will automatically include its parent unit in the analysis. Subunits are
processed during the analysis of the including unit; there is therefore no need to specify subunits
explicitely. If you do specify a subunit explicitly, it will result in the whole enclosing unit being
analyzed.

However, as a convenience to the user, units can be specified as file names, provided they
follow the default GNAT naming convention. More precisely, if a parameter ends in “.ads” or
“.adb”, the unit name is extracted from it (and all “-” in the name are substituted with “.”). File
names can include a path; in this case, the path is automatically added to the list of directories
searched (“-I” ASIS option). The file notation is convenient to process all units in a directory,
as in the following example:

adactl -f my_rules.aru *.adb

In the unlikely case where you have a child unit called Ads or Adb, use the “-u” option to
force interpretation of all parameters as unit names.

By default, both the specification and body of the unit are processed; however, it is possible
to specify processing of the specification only by providing the “-s” option. If only file names
are given, the “-s” option is assumed if all files are specifications (“.ads” files). It is not possible
to specify processing of bodies only, since rules dealing with visibility would not work.

The “-r” option tells AdaControl to process (recursively) all user units that the specified
units depend on (including parent units if the unit is a child unit or a subunit). Predefined Ada
units and units belonging to the compiler’s run-time library are never processed.

Ex:

Chapter 3: Program Usage 8

adactl -r -f my_rules.aru my_main

will process my_main and all units that my_main depends on. If my_main is the main proce-
dure, this means that the whole program will be processed.

It is possible to specify more than one unit (not file) to process in a parameter by separating
the names with “+”. Conversely, it is possible to specify units that are not to be processed,
separated by “-”. When a unit is subtracted from the unit list, it is never processed even if
it is included via the recursive option, and all its child and separate units are also excluded.
This is convenient to avoid processing reusable components, that are not part of a project. For
example, if you want to run AdaControl on itself, you should use the following command:

adactl -f my_rules_file.aru -r adactl-asis-a4g

This applies the rules from the file my_rules_files.aru to AdaControl itself, but not to
units that are part of ASIS (units Asis, A4G, and their children) that would be found by the
“-r” (recursive) option otherwise.

Alternatively, it is possible to provide units indirectly with a parameter consisting of an “@”
followed by the name of a file. This file must contain a list of unit names (not files), one on
each line. All units whose names are given in the file will be processed. If a name in the file
starts with “@”, it will also be treated as an indirect file (i.e. the same process will be invoked
recursively). If a line in the file starts with “#” or “--”, it is ignored. This can be useful to
temporarily disable the processing of some files or to add comments.

Ex:

adactl -f my_rules.aru @unit_file.txt

3.1.2 Commands

Commands specify which processing AdaControl should apply to units. See Chapter 4 [Com-
mand language reference], page 22 for a detailed description of all commands.

Commands can be given directly on the command line with the “-l” option. A commands
list must be quoted with “"”.

Ex:

adactl pack.ads proc.adb -l "check instantiations (My_Generic);"

It is possible to pass several commands separated by “;”, but as a convenience to the user,
the last “;” may be omitted.

Commands can also be read from a file, whose name is given after the “-f” option (the “.aru”
extension is taken by default). As a special case, if the file name is “-”, commands are read
from the standard input. This is intended to allow AdaControl to be pipelined behind something
that generates commands; if you want to type commands directly to AdaControl, the interactive
mode is more appropriate. See Section 3.4 [Interactive mode], page 11.

Ex:

adactl -f my_rules.aru proc.adb

Note that the “-l” and “-f” options are not exclusive: if both are specified, the commands to
be performed include those in the file (first) and then those given on the command line.

3.1.3 Output file

Messages produced by controls are output to the output file; by default, it is the standard
output, but it can be changed by specifying the “-o” option.

Ex:

adactl -f my_rules.aru -o my_output.txt proc.adb

Chapter 3: Program Usage 9

If the output file exists, new messages are appended to it. This allows running AdaControl
under several directories that make up the project, and gathering the results in a single file.
However, if the “-w” option is given, AdaControl overwrites the output file if it exists.

All other messages, including syntax error messages, units processed (in verbose mode), and
possible internal error mesages from AdaControl itself are output to the standard error file.

3.1.4 Output format

The “-F” option selects the output format. It must be followed by “Gnat”, “Gnat Short”,
“CSV”, “CSV Short”, “Source”, “Source Short”, or “None” (case insensitive). By default, the
output is in “Gnat” format. See Section 4.2.1 [Control kinds and report messages], page 23 for
details.

The “-S” option selects which statistics are output after each run. It must be followed by
a value in the range 0..3. See Section 4.2.1 [Control kinds and report messages], page 23 for
details on the various statistics levels.

The “-T” option prints a summary of timing at the end of the run. This indicates how long
(in real-time seconds) was spent in processing each rule.

Ex:

adactl -F CSV -S 2 -f my_rules.aru -o my_output.csv proc.adb

3.1.5 Output limits

The “-m” and “-M” options are used to limit the output of AdaControl. These options are
followed by an integer value that specifies the maximum number of error messages (“-m”) or
warning and error messages (“-M”). If the value is omitted, a previous limitation (comming for
example from a command file) is cancelled.

If the indicated number of messages is exceeded during a run, AdaControl stops immediately.

3.1.6 Project files

An emacs project file (the file with a “.adp” extension used by the Ada mode of Emacs) can
be specified with the “ -p” option. AdaControl will automatically consider all the directories
mentioned in “src dir” lines from the project file.

Ex:

adactl -f my_rules.aru -p proj.adp proc.adb

Note that AdaControl does not accept “.gpr” project files, because ASIS does not currently
accept the “-P” option like other Gnat commands do. However, when run from GPS, the
interface will automatically use the source directories from the current (root) project (unless you
have explicitely set a “.adp” file in the switches Section 3.6.3 [AdaControl switches], page 14).

If you have a project that uses “.gpr” project files and you want to run AdaControl from the
command line (not from GPS), you can generate a “.adp” project file from a “.gpr” project
file from within GPS, by using the “Tools/AdaControl/Generate .adp project” menu. See
Section 3.6 [Running AdaControl from GPS], page 13. Alternatively, it is also possible to
use GPS project files by generating the tree files manually. see Section 3.9.2 [Generating tree
files manually], page 19 for details.

3.1.7 Local disabling control

The “-i” option tells AdaControl to ignore disabling markers in Ada source code (see Section 4.2.4
[Disabling controls], page 25); i.e. all controls will be performed, regardless of the presence of
disabling markers.

Note that if you you have many messages, setting this option can speed-up AdaControl
considerably. It is therefore advisable to always set this option when you know that there is no
disabling marker in your source code.

Chapter 3: Program Usage 10

3.1.8 Verbose and debug mode

In the default mode, AdaControl displays only messages from triggered controls. It is possible
to get more information with the verbose option (“-v”). In this mode, AdaControl displays a a
progress indicator and unit names as they are processed, and its global execution time when it
finishes. Note that the progress indicator includes an indication of the run number if there are
more than one “go” command.

The “-d” option enables debug mode. This mode provides more information in case of an
internal program error, and is of little interest for the casual user. In this mode, AdaControl
may also, in rare occasions (and only with some versions of Gnat), display ASIS “bug boxes”;
this does not mean that something went wrong with the program, but simply that an ASIS
failure was properly recovered by AdaControl.

Output of the messages printed by the “-d” option can be directed to a “trace” file (instead
of being printed to the standard error file). This is done by the “-t” option, which must be
followed by the file name. If the trace file exists, new messages are appended to it.

3.1.9 Treatment of warnings

The “-e” option tells AdaControl to treat warnings as errors, i.e. to report a return code of 1
even if only “search” controls were triggered. See Section 3.2 [Return codes], page 11. It does
not change the messages however.

Conversely, the “-E” option tells AdaControl to not report warnings at all, i.e. only errors
are reported. However, if you ask for statistics, the number of warning messages is still counted.
See Section 4.2.1 [Control kinds and report messages], page 23.

3.1.10 Exit on error

If an internal error is encountered during the processing of a unit, AdaControl will continue to
process other units. However, if the “-x” option is given, AdaControl will stop on the first error
encountered. This option is mainly useful if you want to debug AdaControl itself (or your own
rules). See Section 3.10 [In case of trouble], page 20.

Ex:

adactl -x -f my_rules.aru proc.adb

3.1.11 ASIS options

Everything that appears on the command line after “--” will be treated as an ASIS option, as
described in the ASIS user manual.

Casual users don’t need to care about ASIS options, except in one case: if you are running
AdaControl from the command line (not from GPS), and if the units that you are processing
reference other units whose source is not in the same directory, AdaControl needs to know how
to access these units (as GNAT would). This can be done either by using an Emacs project
file with the “-p” option (see Section 3.1.6 [Project files], page 9), by putting the appropriate
directories into the ADA INCLUDE PATH environment variable, or by passing “-I” options to
ASIS.

It is possible to pass one or several “-I” options to ASIS, to provide other directories where
sources can be found. The syntax is the same as the “-I” option for GNAT.

Other ASIS options, like the “-Cx” and/or “-Fx” options, can be specified. Most users can
ignore this feature; however, specifying these options can improve the processing time of big
projects. See Section 3.9 [Optimizing Adacontrol], page 18.

Chapter 3: Program Usage 11

3.2 Return codes

In order to ease the automation of controlling programs with shell scripts, AdaControl returns
various error codes depending on how successful it was. Values returned are:

• 0: At most “search” controls (i.e. warnings) were triggered (no control at all with “-e”
option)

• 1: At least one “check” control (i.e. error) was triggered (or at least one “search” or “check”
control with “-e” option)

• 2: AdaControl was not run due to a syntax error in the rules or in the specification of units.

• 10: There was an internal failure of AdaControl.

3.3 Environment variable and default settings

If the environment variable “ADACTLINI” is set, its content is taken as a set of commands
(separated by semi-colons) that are executed before any other command. Although any com-
mand can be specified, this is intended to allow changing default settings with “set” commands.
See Section 4.3.6 [Set command], page 27.

For example, you can set ADACTLINI to “set format Gnat Short” if you prefer having you
messages in short format rather than the (default) long format.

3.4 Interactive mode

The “-I” option tells AdaControl to operate interactively. In this mode, commands specified
with “-l” or “-f” options are first processed, then AdaControl prompts for commands on the
terminal. Note that the “quit” command (see Section 4.3.2 [Quit command], page 26) is used
to terminate AdaControl.

The syntax of commands run interactively is exactly the same as the one used for files;
especially, each command must be terminated with a “;”. Note that the prompt (“Command:”)
becomes “.......:” when AdaControl requires more input because a command is not completely
given, and especially if you forget the final “;”.

As with files, it is possible to give several commands on a single line in interactive mode. If a
command contains syntax errors, all “go” commands (see Section 4.3.1 [Go command], page 26)
on the same line are temporarily disabled. Other commands that do not have errors are normally
processed however.

The interactive mode is useful when you want to do some analysis of your code, but don’t
know beforehand what you want to control. Since the ASIS context is open only once when the
program is loaded, queries will be much faster than running AdaControl entirely with a new
query given in a “-l” option each time. It is also useful to experiment with AdaControl, and to
check interactively commands before putting them into a file.

3.5 Other execution modes

In addition to normal usage, AdaControl features special options to ease its use; no Ada unit is
analyzed when using these options.

3.5.1 Getting help

The “-h” option provides help about Adacontrol usage. If the “-h” option is given, no other
option is analyzed and no further processing happens.

Syntax:

adactl -h [<keyword> | <rule name>...]

<keyword> ::= all | commands | license | list | options | rules | version

Chapter 3: Program Usage 12

The “-h” option without parameter displays a help message about usage of the AdaControl
program, the various options, and the rule names.

Otherwise, the “-h” must be followed by one or several keywords or rule names (case irrele-
vant); its effect is:

• <rule name>: display the help message for the indicated rule.

• “all”: display the help message for all rules.

• “commands”: display a summary of all commands

• “license”: display the license information

• “list”: display the names of all rules (note that “rules” also displays the list of rules, in
a prettier format; the “list” option is mainly useful for the integration of AdaControl into
GPS).

• “options”: display help about the command-line options

• “rules”: display the names of all rules.

• “version”: display AdaControl and ASIS implementation version numbers.

Ex:

adactl -h pragmas Unnecessary_Use_Clause

adactl -h all

adactl -h version license

3.5.2 Checking commands syntax

The “-C” option is used to check syntax of commands without executing any control.

Syntax:

adactl -C [-dv] [-f <rules file>] [-l <rules list>]

In this mode, AdaControl simply checks the syntax of the commands provided with the “-l”
option, or of the commands provided in the file named by the “-f” option (at least one of these
options must be provided). No other processing will happen.

AdaControl will exit with a return code of 0 if the syntax is correct, and 2 if any errors are
found. A confirming message that no errors were found is output if the “-v” option is given.

This option is especially useful when you have modified a rules file, before trying it on many
units. The way AdaControl works, it must open the ASIS context (a lengthy operation) before
analyzing the rules. This option can therefore save a lot of time if the rules file contains errors.

3.5.3 Generating a units list

The “-D” options produces a list of units that can be reused as an indirect file in later runs.
Syntax:

adactl -D [-rsvw] [-o <output file>] [-p <project file>]

{<unit>[+|-<unit>]|[@]<file>} [-- <ASIS options>]

In this mode, AdaControl outputs the list of units that would be processed. It is especially
useful when used with the “-r” option and given the main unit name, since it will then generate
the whole list of dependent units (hence the name “D”).

This list can be directed to a file with the “-o” option (if the file exists, it won’t be overwritten
unless the “-w” option is specified). This file can then be used in an indirect list of units. See
Section 3.1.1 [Input units], page 7. Note that it is more efficient to create the list of units once
and then use the indirect file than to specify all applicable units or use the “-r” option each time
AdaControl is run.

Chapter 3: Program Usage 13

3.6 Running AdaControl from GPS

If you want to use AdaControl from GPS, make sure you have copied the necessary files into
the required places. See Section 2.2 [Installing AdaControl], page 6.

AdaControl integrates nicely into GPS, making it even easier to use. It can be launched from
menu commands, and parameters can be set like any other GPS project parameters. When run
from within GPS, AdaControl will automatically retrieve all needed directories from the current
GPS project.

After running AdaControl, the “locations” panel will open, and you can retrieve the locations
of errors from there, just like with a regular compilation. Errors will be marked in red in the
source, warning will be marked orange, and you will have corresponding marks showing the
places of errors and warnings in the speedbar. Note that AdaControl errors appear under
the “AdaControl” category, but if there were compilation errors, they will appear under the
“Compilation” category. Final counts from “count” control kinds will appear under the “Counts
summary” category, and statistics under the “Statistics” category.

3.6.1 The AdaControl menu and buttons

GPS now features an “AdaControl” menu, with several submenus:

• “Control Current File (rules file)” runs AdaControl on the currently edited file, with rules
taken from the current rules file; this menu is greyed-out if no rules file is defined, if no
file window is currently active, or if the associated language is not “Ada”. The name of
the rules file can be set from the “Library” tab from the “Project/Edit Project Properties”
menu.

• “Control Root Project (rules file)” runs AdaControl on all units that are part of the root
project, with rules taken from the current rules file; this menu is greyed-out if no rules file is
defined. The name of the rules file can be set from the “Library” tab from the “Project/Edit
Project Properties” menu.

• “Control Units from List (rules file)” runs AdaControls on units given in a indirect file, with
rules taken from the current rules file. This menu is greyed-out if no rules file is defined or
if no indirect file is defined. The name of the rules file and of the indirect file can be set
from the “Library” tab from the “Project/Edit Project Properties” menu.

• “Control Current File (interactive)” runs AdaControl on the currently edited file, with a
rule asked interactively from a pop-up; this menu is greyed-out if no file window is currently
active, or if the associated language is not “Ada”.

• “Control Root Project (interactive)” runs AdaControl on all units that are part of the root
project, with a rule asked interactively from a pop-up.

• “Control Units from List (interactive)” runs AdaControls on units given in a indirect file,
with a rule asked interactively from a pop-up. This menu is greyed-out if no indirect
file is defined. The name of the indirect file can be set from the “Library” tab from the
“Project/Edit Project Properties” menu.

• “Check Rules File” checks the syntax of the current rules file. This menu is deactivated if
the current window does not contain an AdaControl rules file.

• “Open Rules File” opens the rules file. This menu is deactivated if there is no current rules
file defined.

• “Open Units File” opens the units file. This menu is deactivated if there is no current units
file defined.

• “Create units file” creates a text file containing all units (not files) names from the current
root project. This file is appropriate as an indirect file for the “... from list” commands.

• “Create .adp project” creates an Emacs-style project file from the current GPS project,
which can be used with the “-p” option if you want to run AdaControl from the command

Chapter 3: Program Usage 14

line. This file has the same name as the current GPS project, with a “.adp” extension. See
Section 3.1.6 [Project files], page 9.

• “Delete Tree Files” removes existing tree files from the current directory. This is convenient
when AdaControl complains that the tree files are not up-to-date. Note that you can set
the preferences for automatic deletion of tree files after each run (see below). Note that the
name of this menu is changed to “Delete Tree and .ali Files” if you have chosen to delete
.ali files in the preferences (see below).

• “Load results file” loads in the location window the result file obtained from a previous
run of AdaControl. The file must have been produced with the “Gnat” or “Gnat Short”
format. See Section 4.2.1 [Control kinds and report messages], page 23.

There are also two buttons representing Lady Ada in a magnifier glass in the toolbar, one
with a red question mark in the background. These buttons launch AdaControl, by default on
the file currently being edited; however, you can change this behaviour from the preferences to
control either files from a list, or all files from the project. The button without the question
mark uses rules from the current rules file, while the one with the question mark asks for the
control to apply interactively.

Here are some tips about using the “interactive” menus (or the button with the question
mark):

• When you use the “interactive” menus several times, the previously entered command(s) is
used as a default.

• You can enter any command from AdaControl’s language in the dialog; you can even enter
several commands separated by “;”.

• Especially, if you want to run AdaControl with a rules file that is not the one defined by
the switches, you can use one of the “interactive” commands, and give “source <file name>”
as the command.

3.6.2 Contextual menu

AdaControl adds two entries to the contextual menus (right click) of Ada files. They call the
pfni utility on the current entity. See Section 3.8.1 [pfni], page 17. The entry “Print full name”
displays the full name of the entity in simple form, while the entry “Print full name (with
overloading)”) prints it with overloading information. If the name refers to an entity which is
initialized (or to a parameter with a default value), and the initial value is static, the name is
followed by this value in parenthesis.

This is convenient to find how to name entities in rule files. See Appendix A [Specifying an
Ada entity name], page 110. It is also convenient to find where an entity is declared, and which
of several overloaded entities is being referred to.

This is also convenient to find the actual value of a constant from anywhere in the program
text, since the printed value is completely evaluated if it is a (static) expression.

3.6.3 AdaControl switches

The tab “switches” from the “Project/Edit Project Properties” menu includes a page for Ada-
Control, which allows you to set various parameters. Since the GPS interface analyzes the
output of AdaControl, you should not set options directly in the bottom window of this page
(the one that displays the actual options passed to AdaControl).

3.6.3.1 Files

This section controls the definition of various files used by AdaControl.

• “Rules file”. This is the name of a file that contains the definition of the controls to be
applied to your project. This file is required for all “control (rules file)” commands.

Chapter 3: Program Usage 15

• “Units file”. This is the name of a file that contains the list of units to be controlled. This
file is required for all “control from list” commands.

• “.adp project file”. This is the name of an emacs project file (.adp). If this name is
not empty, AdaControl will use it instead of providing all libraries as “-I” options on the
command line. This may be necessary if you have many libraries and the command line
that launches AdaControl becomes too long. Note that this file can be created using the
“AdaControl/Create .adp project” menu.

3.6.3.2 Processing

This section offers options that control how units are processed.

• “Recursive mode”. This sets the “-r” option. See Section 3.1.1 [Input units], page 7.

• “Ignore local deactivation”. This sets the “-i” option. See Section 3.1.7 [Local disabling
control], page 9.

• “Process specs only”. This sets the “-s” option. See Section 3.1.1 [Input units], page 7.

• “Compilation unit mode”. This sets the “-u” option. See Section 3.1.1 [Input units], page 7.

3.6.3.3 Debug

This section controls the debugging options of AdaControl.

• “Debug messages”. This sets the “-d” option. See Section 3.1.8 [Verbose and debug mode],
page 10.

• “Halt on error”. This sets the “-x” option. See Section 3.1.10 [Exit on error], page 10.

3.6.3.4 Output

This section offers options that control where and how the output of AdaControl is displayed.

• “Display only errors”. This sets the “-E” option. See Section 3.1.9 [Treatment of warnings],
page 10.

• “Warnings as errors”. This sets the “-e” option. See Section 3.1.9 [Treatment of warnings],
page 10.

• “Statistics”. This sets the “-S” option from a pull-down menu. See Section 4.2.1 [Control
kinds and report messages], page 23.

• “Send results to GPS”. When checked (default), the output of AdaControl is sent to the
“locations” window of GPS.

• “Send results to File”. When checked, the output of AdaControl is sent to the file indicated
in the box below.

• “Send results to File and GPS”. When checked, the output of AdaControl is sent to the file
indicated in the box below, and the content of the file is then automatically reloaded in the
“locations” window of GPS. If this option is set, the file format is always “Gnat” (the file
format option is ignored).

• “File name”. This is the name of the file that will contain the results when sent to “File”
or “File and GPS”. If the results are sent to “File” and the file exists, AdaControl will ask
for the permission to overwrite it. If the results are sent to “File and GPS”, the result file
is always overriden without asking.

• “File format”. This is a pull-down menu that allows you to select the desired format when
output is directed to a file (“-F” option). See Section 4.2.1 [Control kinds and report
messages], page 23.

Chapter 3: Program Usage 16

3.6.3.5 ASIS

This section controls the ASIS parameters passed to AdaControl. The content of the input field
“ASIS options” is used in place of the standard (“-CA -FM”) one.

Casual users don’t need to change the default ASIS options. For more details, see
Section 3.1.11 [ASIS options], page 10.

3.6.4 AdaControl preferences

There is an entry for AdaControl in the “edit/preferences” menu:

• “delete trees”. If this box is checked, tree files are automatically deleted after each run
of AdaControl. This avoids having problems with out-of-date tree files, at the expanse of
slightly slowing down AdaControl if you run it several times in a row without changing the
source files.

• “Delete .ali files with tree files”. If this box is checked, the “.ali” files in the current
directory will also be deleted together with the tree files (either automatically if the previous
box is checked, or when the “AdaControl/Delete Tree Files” menu is selected). This is
normally what you want, unless the current directory is also used as the object directory
for compilations; in the latter case, deleting “.ali” files would cause a full recompilation for
the next build of the project.

• “Help on rule”. This allows you to select how rule specific help (from the
“Help/AdaControl/Help on rule” menu) is displayed. If you select “Pop-up”, a summary
of the rule’s purpose and syntax is displayed in a pop-up. If you select “User Guide”,
the user guide opens in a browser at the page that explains the rule. (Caveat: due to a
problem in GPS under Windows, the “User Guide” option may not work at all, or the
browser will not find the right anchor; hopefully, this will be fixed in an upcomming release
of GPS. No such problem under Linux).

• “Use separate categories”. If this box is checked, there will be one category (i.e. tree in
the locations window) for each rule type or label, otherwise all messages will be grouped
under the single category “AdaControl”. In practice, this means that with the box checked,
messages will be sorted by rules first, then by files, while otherwise, the messages will
be sorted by files first, then by rules. In any case, compilation errors appear under the
“Compilation” category, final counts under the “Counts summary” category, and statistics
under the “Statistics” category.

• “Auto save files”. If this box is checked, all modified files are automatically saved without
asking before running AdaControl. Otherwise, a dialog appears allowing the user to choose
which files to save.

• “Buttons operate on”. This defines the behaviour of the buttons. If “Current File” is
selected, the buttons operate on the file being currently edited. If “Root Project” is selected,
the buttons operate on all files that are part of the current project. If “Units from List” is
selected, the buttons operate on all units from the units file.

• “Display AdaControl run”. If this box is checked, the command line used to launch Ada-
Control and the output messages are displayed in the “Messages” window.

• “Max allowed error messages”. If non zero, run will stop if the number of error messages
exceeds this limit. See Section 3.1.5 [Output limits], page 9.

• “Max allowed messages (all kinds)”. If non zero, run will stop if the number of error and
warning messages exceeds this limit. See Section 3.1.5 [Output limits], page 9.

3.6.5 AdaControl language

If you check “AdaControl” in the “Languages” tab, GPS will recognize files with extension .aru

as AdaControl rules files, and provide appropriate colorization.

Chapter 3: Program Usage 17

3.6.6 AdaControl help

The AdaControl User Manual (this manual) and the AdaControl Programmer Manual are avail-
able from the "Help/AdaControl" menu of GPS.

The "Help on rule" entry displays the list of all rules; if you click on one of them, you get
help for the particular rule. Depending on the setting of the “Help on rule” preference (see
above), it opens a pop-up that displays the rule(s) purpose and the syntax of its parameters, or
opens the user guide at the appropriate location.

The “About” entry displays a popup with AdaControl’s version number and license condition.

3.6.7 Caveat

GPS may crash when the output of a command is too big (i.e. hundreds of messages with
AdaControl). If this happens, use the “preferences” menu to limit the number of messages.

3.7 Running AdaControl from AdaGide

If you want to use AdaControl from AdaGide, make sure you have copied the necessary file
into the required place. See Section 2.2 [Installing AdaControl], page 6. Note that AdaGide
does not have all the parameterization facilities of sophisticated environments like GPS, but all
AdaControl options, like the name of the rules file or the output format, can easily be changed
by editing the tool description file AdaControl.tdf.

AdaGide now features several AdaControl commands from the “tool” menu:

• “AdaControl” runs AdaControl on the currently edited file, with rules taken from the file
named verif.aru.

• “AdaControl recursive” works like the previous command, with the addition of the “-r”
(recursive) option. When used on the main program, it will analyze the whole set of
compilation units in the program.

• “AdaControl interactive” runs AdaControl on the currently edited file, with a rule asked
interactively from a pop-up.

• “AdaControl: delete .adt” removes existing tree files from the current directory. This is
convenient when AdaControl complains that the tree files are not up-to-date.

3.8 Helpful utilities

This section describe utilities that are handy to use in conjunction with AdaControl.

3.8.1 pfni

The convention used to refer to entities (as described in Appendix A [Specifying an Ada entity
name], page 110) is very powerful, but it may be difficult to spell out correctly the name of some
entities, especially when using the overloaded syntax.

pfni (which stands for Print Full Name Image) can be used to get the correct spelling for
any Ada entity. The syntax of pfni is:

pfni [-sofdq] [-p <project-file>] <unit>[:]

[-- <ASIS options>]

 ::= <line_number>

| [<first_line>]-[<last_line>]

| <line_number>:<column_number>

or

pfni -h

If called with the “-h” option, pfni prints a help message and exits.

Chapter 3: Program Usage 18

Otherwise, pfni prints the full name image of all identifiers declared in the indicated unit,
unless there is a “-f” (full) option, in which case it prints the full name image of all identifiers
(i.e. including those that are used, but not declared, in the unit). The image is printed without
overloading information, unless the “-o” option is given.

The <unit> is given either as an Ada unit, or as a file name, provided the extension is “.ads”
or “.adb” (as in AdaControl). If a span is given, only identifiers within the span are printed. In
the first form, the span includes only the indicated line; in the second form, the span includes
all lines from <first line> to <last line> (if omitted, they are taken as the first and last line
of the file, respectively). In the third form, the span includes only the place at the specified
<line number> and <column number>.

Normally, the source line corresponding to the names is printed above the names. The “-q”
(quiet) option suppresses this.

If the “-s” option is given (or the unit is a file name with a “.ads” extension), the specification
of the unit is processed, otherwise the body is processed. The “-p” option specifies the name
of an Emacs project file, and the “-d” option is the debug mode, as for AdaControl itself.
ASIS options can be passed, like for AdaControl, after a “--” (but -FS is the default). See
Section 3.1.11 [ASIS options], page 10.

As a side usage of pfni, if you are calling a subprogram that has several overloadings and
you are not sure which one is called, use pfni with the “-o” option on that line: the program
will tell you the full name and profile of the called subprogram.

3.8.2 makepat.sed

This file (provided in the “src” directory) is a sed script that transforms a text file into a set of
correponding regular expressions. It is useful to generate model header files. See Section 5.18
[Header Comments], page 54.

3.8.3 unrepr.sed

This file (provided in the “src” directory) is a sed script that comments out all representation
clauses. It is typically useful if you use a different compiler that accepts representation clauses
not supported by GNAT.

Typically, you would copy all your sources in a different directory, copy “unrepr.sed” in that
directory, then run:

sed -i -f unrepr.sed *.ads *.adb

You can now run AdaControl on the patched files. Of course, you won’t be able to check
rules related to representation clauses any more...

Note that the script adds “--UNREPR ” to all representation clauses. Its effect can thus
easily be undone with the following commad:

sed -i -e "s/--UNREPR //" *.ads *.adb

3.9 Optimizing Adacontrol

There are many factors that may influence dramatically the speed of AdaControl when processing
many units. For example, on our canonical test (same controls, same units), the extreme points
for execution time were 111s. vs 13s.! Unfortunately, this seems to depend on a number of
parameters that are beyond AdaControl’s control, like the relative speed of the CPU to the
speed of the hard-disk, or the caching strategy of the file system.

This section will give some hints that may help you increase the speed of AdaControl, but
it will not change the output of the program; you don’t really need to read it if you just use
AdaControl occasionnally. This section is concerned only with the GNAT implementation of
ASIS; other implementations work differently.

Chapter 3: Program Usage 19

Bear in mind that the best strategy depends heavily on how your program is organized, and
on the particular OS and hardware you are using. Therefore, no general rule can be given, you’ll
have to experiment yourself. Hint: if you specify the “-v” option to AdaControl, it will print in
the end the elapsed time for running the tests; this is very helpful to make timing comparisons.

Note: all options described in this section are ASIS options, i.e. they must appear last on
the command line, after a “--”.

3.9.1 Tree files and the ASIS context

Since AdaControl is an ASIS application, it is useful to explain here how ASIS works. ASIS
(and therefore AdaControl) works on a set of units constituting a “context”. Any reference to
an Ada entity which is not in the context (nor automatically added, see below) will be ignored;
especially, if you specify to AdaControl the name of a unit which is not included in the current
context, the unit will simply not be processed.

ASIS works by exploring tree files (same name as the corresponding Ada unit, with a “.adt”
extension), which are “predigested” views of the corresponding Ada units. By default, the tree
files are generated automatically when needed, and kept after each run, so that subsequent runs
do not have to recreate them.

A context in ASIS-for-Gnat is a set of tree files. Which trees are part of the context is defined
by the “-C” option:

• -C1 Only one tree makes up the context. The name of the tree file must follow the option.

• -CN Several explicit trees make up the context. The name of the tree files must follow the
option.

• -CA All available trees make up the context. These are the tree files found in the current
directory, and in any directory given with a “-T” option (which works like the “-I” option,
but for tree files instead of source files).

The “-F” option specifies what to do if the program tries to access an Ada unit which is not
part of the context:

• -FT Only consider tree files, do not attempt to compile units on-the-fly

• -FS Always compile units on-the-fly, ignore existing tree files

• -FM Compile on-the-fly units for which there is no already existing tree file

Note that “-FT” is the only allowed mode, and must be specified, with the “-C1” and “-CN”
options.

The default combination used by AdaControl is “-CA -FM”.

3.9.2 Generating tree files manually

It is also possible to generate the tree files manually before running AdaControl. Although
this mode of operation is less practical, it is recommended by AdaCore for any ASIS tool that
deals with many compilation units. Some reasons why you might want to generate the tree files
manually are:

• Your project uses GNAT project files, but you don’t want to run AdaControl from GPS;

• Your project has several source directories (ASIS had problems with
ADA INCLUDE PATH, until releases dated later than Sept. 1st, 2006). Note
that an alternative solution is to specify source directories with the -I option;

• It is faster to generate tree files once than to use “compile on the fly” mode.

To generate tree files manually, simply recompile your project with the “-gnatct” option.
This option can be passed to gnatmake normally. Of course, you will need all other options
needed by your project (like the “-P” option if you are using GNAT project files).

Chapter 3: Program Usage 20

Tree files may be copied into a different directory if you don’t want your current directory
to be cluttered by them. In this case, use the “-T” ASIS option to indicate the directory where
the tree files are located.

If you chose to generate the tree files manually, you may want to specify the “-FT” ASIS
option (see above) to prevent from accidental automatic recompilation.

3.9.3 Choosing an appropriate combination of options

In order to optimize the use of AdaControl, it is important to remember that reading tree
files is a time-consuming operation. On the other hand, a single tree file contains not only
information for the corresponding unit, but also for the specifications of all units that the given
unit depends on. Moreover, our measures showed that reading an existing tree file may be slower
than compiling the corresponding unit on-the-fly (but once again, YMMV).

Here are some hints to help you find the most efficient combination of options.

• If you want to run AdaControl on all units of your program, use the “-D” option to create
a file containing the list of all required units, then use this file as an indirect file. Using
the the “-r” option (recursive mode) of AdaControl implies an extra pass over the whole
program tree to determine the necessary units.

• If you have not disabled any rule (and have many messages), specifying the “-i” option
(ignore disabling) saves AdaControl the burden of checking whether rules are disabled,
which can result in a sensible speed-up.

• Avoid having unnecessary tree files. All tree files in the context are read by ASIS, even if
they are not later used. If you don’t want to run AdaControl on the whole project, deleting
tree files from a previous run can save a lot of time.

• When using an indirect file, the order in which units are given may influence the speed of
the program. As a rule of thumb, units that are closely related should appear close to each
other in the file. A good starting point is to sort the file in alphabetical order: this way,
child units will appear immediately after their parent. You can then reorder units, and
measure if it has a significant effect on speed.

• If you want to check a unit individually, try using the “-C1” option (especially if the current
directory contains many tree files from previous runs). Remember that you must specify
the unit to check to AdaControl, and the tree file to ASIS. I.e., if you want to check the
unit “Example”, the command line should look like:

adactl -f rules_file.aru example -- -FT -C1 example.adt

provided the tree file already exists.

• For each strategy, first run AdaControl with the default options (which will create all
necessary tree files). Compare execution time with the one you get with “-FT” and “-FS”.
This will tell you if compiling on-the-fly is more efficient than loading tree files, or not.

3.10 In case of trouble

3.10.1 Known issues

If you are using an old version of GNAT and your project includes source files located in several
directories, the ADA INCLUDE PATH environment variable may not be considered by ASIS,
resulting in error messages that tell you that the bodies of some units have not been found (and
hence have not been processed). This problem has been fixed in Gnat dated later than Sept. 1st,
2006. If this happens, either provide your source directories as “-I” options (see Section 3.1.11
[ASIS options], page 10), or generate the tree files manually (see Section 3.9.2 [Generating tree
files manually], page 19). Note that this problem does not happen if you are using Emacs project
files (see Section 3.1.6 [Project files], page 9), nor if you are running AdaControl from GPS.

Chapter 3: Program Usage 21

3.10.2 AdaControl or ASIS failure

Like any sophisticated piece of software, AdaControl may fail when encountering some special
case of construct. ASIS may also fail occasionnally; actually, we discovered several ASIS bugs
during the development of AdaControl. These were reported to ACT, and have been corrected
in the wavefront version of GNAT - but you may be using an earlier version. In this case, try
to upgrade to a newer version of ASIS. If an AdaControl or ASIS problem is not yet solved,
AdaControl is designed in such a way that an occasionnal bug won’t prevent you from using it.

If AdaControl detects an unexpected exception during the processing of a unit (an ASIS error
or an internal error), it will abandon the unit, clean up everything, and go on processing the
remaining units. This way, an error due to a special case in a unit will not affect the processing
of other units. AdaControl will return a Status of 10 in this case.

However, if it is run with the “-x” option (eXit on error), it will stop immediately, and no
further processing will happen.

If you don’t want the garbage from a failing rule to pollute your report, you may chose to
disable the rule for the unit that has a problem. See Section 4.3.8 [Inhibit command], page 28.

If you encounter a problem while using AdaControl, you are very welcome to report it to
rosen@adalog.fr. Please include the exact control and the unit that caused the problem, as well
as the captured output of the program (with “-d” option).

mailto::rosen@adalog.fr

Chapter 4: Command language reference 22

4 Command language reference

AdaControl is about controlling rules. Rules are built in AdaControl; each rule has a name,
and may require parameters. For the complete description of each rule, see Chapter 5 [Rules
reference], page 30.

To run AdaControl, you need to define which rules you want to apply to your Ada units,
what are the parameters, etc. In addition, you may want to define various things, like the file
where the results should go, the output format, etc.

AdaControl defines a small command language which is used to describe how you want to
process your units. Commands can be specified either on the command line or in a file, that
we call here a rules file. Commands can also be given interactively; See Section 3.4 [Interactive
mode], page 11.

4.1 General

The command language is not case-sensitive, i.e. the case of the keywords, rule names, and
parameters is not significant. The layout of commands is free (i.e. a command can extend over
several lines, and spaces are freely allowed between syntactic elements).

Comments are allowed in and between commands. Comments begin with a “#” or a “--”,
and extend to the end of the line.

Since wide characters are allowed in Ada programs, AdaControl accepts wide characters in
commands as well. With GNAT, the encoding scheme is Hex ESC encoding (see the GNAT User-
Guide/Reference-Manual). This is the prefered method, since few people require wide characters
in programs anyway, and that keeping the default bracket encoding would not conveniently allow
brackets for regular expressions, like those used by some rules. See Appendix B [Syntax of regular
expressions], page 113.

If a syntax error is encountered in a command, an appropriate error message is output, and
analysis of the rules file continues in order to output all errors, but no analysis of user code will
be performed.

4.2 Controls

A control command is a command that declares one (or several) controls. A control defines how
a rule is applied to Ada units. The syntax of a control command is as follows:

<control_command> ::= [<label> ":"] <control> {"," <control>} ";"

<control> ::= <ctrl_kind> <Rule_Name> [<parameters>]

<parameters ::= "(" [<modifiers>] <value> {"," [<modifiers>] <value>} ")"

<ctrl_kind> ::= "check"|"search"|"count"

If present, the label gives a name to the control(s); it will be printed whenever each control
is activated, and can be used to disable the control(s). See Section 4.2.4 [Disabling controls],
page 25. If no label is present, the rule name is printed instead. The label must have the syntax
of an Ada identifier, or else the label must be included within double quotes ("), in which case
it can contain any character.

Each control consists of a <ctrl kind> followed by a rule name, and (optionally) parameters.
Some parameters may be preceded by modifiers (such as “not” or “case sensitive”). The meaning
of the rule parameters and modifiers depends on the rule.

Here are some examples of commands:

check unnecessary_use_clause;

All_Imports: search pragmas (Import);

"Why do you need that?": check entities (Unchecked_Conversion,

Chapter 4: Command language reference 23

all ’Address);

Specifying several controls with the same label is a shorthand which is equivalent to specifying
the same label for several controls. It is handy when the label is long, and/or to stress that
several controls are part of the same programming rule. For example:

"Check why this obsolete stuff is still used":

check entities (obsolete_unit_1), -- Note comma here!

check instantiations (some_obsolete_generic);

4.2.1 Control kinds and report messages

There are three control kinds: “check”, “search”, and “count”.

“Check” is intended to search for rules that must be obeyed in your programs. Normally,
if a “Check” control fails, you should fix the program. “Search” is intended to report some
situations, but you should consider what to do on a case-by-case basis. Roughly, use “check”
when you consider that the failure of the control is an error, and “search” when you consider it
as a warning. AdaControl will exit with a status of 1 if any “Check” control is triggered, and a
status of 0 if only “Search” controls were triggered (or no control was triggered at all).

“Count” works like “Search”, but instead of printing a message for each control which is
triggered, it simply counts occurrences and prints a summary at the end of the run. There is a
separate count for each control label (or if no label is given, the rule name is taken instead); if
you give the same label to different controls, this allows you to accumulate the counts.

A report message (except for the final report of “count”) comprises the following elements:

• the file name (where the control matches)

• the line number (where the control matches)

• the column number (where the control matches)

• the label (if there is one) and/or the rule name (the rule that matches).

• a message (why the control matches). A control whose kind is “check” will produce an error
report message (i.e. containing the keyword “Error”) and a control whose kind is “search”
will produce a found report message (i.e. containing the keyword “Found”).

The formatting of the report message depends on the format option, which can be selected
with the “-F” command-line option or the “set format” command.

If the format is “Gnat” (the default) or “Gnat Short”, items are separated by ’:’; this is
the same format as the one used by GNAT error messages. Editors (like Emacs or GPS) that
recognize this format allow you to go directly to the place of the message by clicking on it. In
order to avoid too long messages, only the label appears, unless there is none, in which case it
is replaced with the rule name.

If the format is “CSV” or “CSV Short”, items are separated by ’,’ and surrounded by double
quotes. This is the “Comma Separated Values” format, which can be read by any known
spreadsheet program, except Excel(tm) by default, which uses the semicolon and not the comma
to separate fields. Therefore, the formats “CSVX” and “CSVX Short” do the same thing, but
using semi-colons (’;’) instead of commas. Both the label (replaced by an empty column if there
is none) and the rule name appear. Note that when an output file is created in one of the “CSV”
formats, a title line is issued as the first line, following normal CSV convention.

If the format is “Source” or “Source Short”, the offending source line is output, and the
message is output behind it, with a “!” pointing to the exact location of the problem.

If the format is “None”, no error message is output at all. This is useful when only the return
code of running AdaControl is desired (just to check if a program is OK or not). Note that this
does not prevent the output of statistics, since these are under control of the “-S” option or the
“set statistics” command. In this case, statistics are output in CSVX format, since asking for

Chapter 4: Command language reference 24

statistics with a “none” format is mainly useful for analysing the statistics with a spreadsheet
program.

With recent versions of Gnat, the file name includes the full path of the source file. If the
“ Short” form of the format option is used, the file name is stripped from any path. This can
make it easier to compare the results of controlling units from various directories. Note that
with older versions of Gnat, the file name never includes the full path, and the “ Short” form
of the format option has no effect.

After each run (see Section 4.3.1 [Go command], page 26), statistics may be output, depending
on the statistics level which is set with the “-S” option or the “set statistics” command. The
meaning of the various levels is as follows:

• 0: No statistics are output (default)

• 1: A count of error and warning messages is output

• 2: The rule name and label (if any) of any control not triggered are output

• 3: The rule name and label (if any) of every control is output, together with a count of
each triggering kind (“check”, “search”, “count”), or “not triggered” if the control was not
triggered.

4.2.2 Parameters

Most rules accept parameters. Parameters can be:

• a keyword for the rule

• a numerical value

• a character string (often a regular expression)

• an Ada entity name

A numerical value is given with the syntax of an Ada integer or real literal (underscores and
exponents are allowed as in Ada). Based literals are supported for integer values; if somebody
can justify a need for supporting them for reals, we’ll be happy to add this feature later...

A character string is given within double quotes “"”. As usual, quotes appearing within the
string are doubled. The tilde character (“~”) can be used as a replacement delimiter, but the
same character must be used at both ends of the string. The latter has been chosen as a character
not used by the various shells, and can be useful to pass quoted strings from parameters on the
command line (unfortunately, we could not use the percent (“%”) sign, because it plays a special
role in DOS/Windows).

An Ada entity name is the full name (prefixed with the names of all units that include it)
of something declared in a program. It can be followed by overloading information, in order to
uniquely identify the Ada entity. If an Ada entity is overloaded and no overloading information is
provided, the rule is applied to all (overloaded) Ada entities that match the name. Alternatively,
it can be “all” followed by a simple name, in wich case it applies to all entities with that name.
See Appendix A [Specifying an Ada entity name], page 110 for the full description of the syntax.
Here are some examples of entity names:

Ada.Text_IO.Put -- All Put defined in Ada.Text_IO

Ada.Text_IO.Put{Standard.Character} -- The Put on Character

all Put -- All Put

Standard.Integer’Image -- The ’Image function on Integer

all ’Image -- All ’Image functions

4.2.3 Multiple controls

Most rules can be used in more than one control (with different parameters). There is no
difference between a single or a multiple configuration rule use: outputs, efficiency, etc. are the
same.

Chapter 4: Command language reference 25

The following rules files produce an identical configuration:

Search Pragmas (Pure, Elaborate_All);

and

Search Pragmas (Pure);

Search Pragmas (Elaborate_All);

However, the second form can be used to give different labels. Consider:

Search Pragmas (Pure);

No_Elaborate: Search Pragmas (Elaborate_All);

The messages for pragma Pure will contain “PRAGMAS”, while those for Elaborate_All
will contain “No Elaborate”. If a disabling comment mentions pragmas, it will disable both
controls, but a disabling comment that mentions No_Elaborate will disable only the second
one.

4.2.4 Disabling controls

It is possible to disable controls on parts of the source code by placing markers in the source
code. A marker is an Ada comment, where the comment mark (--) is immediately followed by
the special tag “##” (by default).

There are two kinds of markers: block markers and line markers. Both kinds specify a list
of controls to disable/re-enable. A list of controls is a list of rule names (to disable/re-enable
all controls on the indicated rule(s)) or control labels (to disable/re-enable all controls with
that label), separated by spaces. Alternatively, the list of controls can be the word “all” to
disable/re-enable all controls.

In a “--##” line, everything appearing after another “##” tag (by default) is ignored. This
allows the insertion of a comment explaining why the control is disabled at that point.

Both tags can be changed with the “set” command. See Section 4.3.6 [Set command], page 27.

4.2.4.1 Block disabling

A control is disabled from a “rule off” marker that applies to it until a “rule on” marker that
applies to it. If there is no appropriate “rule on” marker, the control is disabled up to the end
of file.

Syntax:

--## rule off <control_list>

Ada code block

--## rule on <control_list>

Ex:

--## rule off rule1 rule2 ## Authorized by QA ref 1234

I := I + 1;

Proc (I);

--## rule on rule2

4.2.4.2 Line disabling

A control is disabled only for the line where a marker that applies to it appears.

Syntax:

Ada code line --## rule line off <rule_list>

Ex:

I := I + 1; --## rule line off rule3 rule_label_1

Conversely, it is possible to re-enable a control for just the current line in a block where it is
disabled:

Chapter 4: Command language reference 26

Syntax:

Ada code line --## rule line on <rule_list>

Ex:

--## rule off rule1 rule2

...

I := I + 1; --## rule line on rule2

4.2.5 Limitation

Since the disabling is based on special comments, there is a conflict with the rule
“header comments” which is based on the content of comments. Line disabling is not possible
with this rule, and block disabling needs special care. See Section 5.18 [Header Comments],
page 54.

4.3 Other commands

In addition to controls, AdaControl recognizes a number of commands. Although these com-
mands are especially useful when using the interactive mode (see Section 3.4 [Interactive mode],
page 11), they can be used in command files as well.

4.3.1 Go command

This command starts processing of the controls that have been specified.

Syntax:

go;

Controls are not reset after a “go” command; for example, the following program:

search entities (pack1);

go;

search entities (pack2);

go;

will first output all usages of Pack1, then all usages of both Pack1 and Pack2. See Section 4.3.5
[Clear command], page 27 to reset controls.

If not in interactive mode, a “go” command is automatically added at the end, therefore it
is not required in rules files.

4.3.2 Quit command

This command terminates AdaControl.

Syntax:

quit;

If given in a file, all subsequent commands will be ignored. This command is really useful
only in interactive mode. See Section 3.4 [Interactive mode], page 11.

4.3.3 Message command

This command prints a message on the output file.

Syntax:

message "<any string>" [pause];

The length of the message is limited to 250 characters. If the word “pause” (case irrelevant)
is specified after the message, AdaControl will wait for the user to press the Return key before
proceeding.

Note that the message is syntactically a string, and must therefore be quoted (double quotes).

Chapter 4: Command language reference 27

4.3.4 Help command

This command prints various informations about the rules and AdaControl itself.

Syntax:

Help [<keyword> | <rule name> {,<keyword> | <rule name>}]

<keyword> ::= all | commands | license | list | options | rules | version

Without any argument, this command prints a summary of all commands and rule names.
If given one or more keywords or rule names, it prints the corresponding help message. See
Section 3.5.1 [Getting help], page 11 for the details.

4.3.5 Clear command

This command command clears (i.e. removes) controls that have been previously given.

Syntax:

Clear all | <rule name>{,<rule name>} ;

The command clears all controls given for the indicated rules, of for all rules if the all

keyword is given. For example, the following program:

search entities (pack1);

go;

clear all;

search entities (pack2);

go;

will first output all usages of Pack1, then all usages of Pack2. Without the “clear all”
command, the second “go” would output all usages of Pack1 together with all usages of Pack2.

4.3.6 Set command

This command sets various parameters of AdaControl.

Syntax:

set Format Gnat|Gnat_Short|CSV|CSV_Short|Source|Source_short|None;

set Check_Key|Search_Key "<value>"

set Max_Errors [<value>];

set Max_Messages [<value>];

set Output|New_Output <output file>;

set Statistics <level>;

set Tag1|Tag2 "<value>";

set Trace <trace file>;

set Debug|Exit_On_Error|Ignore|Timing|Verbose|Warning|Warning_As_Error

On|Off;

The “set format” command selects the output format for the messages, like the “-F” option;
see Section 4.2.1 [Control kinds and report messages], page 23 for details.

The “set check key” command defines a string which is used in place of “Error” in messages
issued by a “check” control. Similarly, the “set search key” command defines a string which is
used in place of “Found” in messages issued by a “search” control. This can be useful when
AdaControl is used, for example, to detect places where manual inspection is required; having
the word “Error” in the message could be misleading to the persons in charge of the review.
Note however that if you set these keys, the GPS interface will not be able to recognize properly
the messages.

The “set max errors” and “set max messages” limit the output of AdaControl, like the “-m”
and “-M” options; see Section 3.1.5 [Output limits], page 9 for details. If no <value> is given
after the command name, the corresponding limitation is removed.

Chapter 4: Command language reference 28

The “set output” and “set new output” commands redirect the output of subsequent controls
to the indicated file. If the string console (case irrelevant) is given as the <output file>, output
is redirected to the console.

The “set new output” always create a new file (or overwrites an existing file with the same
name).

The “set output” command appends if the file exists, unless the “-w” option is given, in
which case it is overwritten. However, the file is overwritten only the first time it is mentionned
in an “output” command. This means that you can switch forth and back between two output
files, all results from the same run will be kept. Note however that for this to work, you need
to specify the output file exactly the same way: if you specify it once as “result.txt”, and then
as “./result.txt”, the second one will overwrite the first one.

The “set statistics” command sets the statistics level, like the “-S” option; see Section 4.2.1
[Control kinds and report messages], page 23 for details.

The “set Tag1|Tag2” command changes the tags used to disable (or enable) rules. “Tag1”
is the string that appears immediately after the comment indicator (--), and “tag2” is the tag
that terminates the special comment. Note that these tags must be given as strings (in quotes)
and that case is relevant. See Section 4.2.4 [Disabling controls], page 25 for details.

The “set trace” command redirects the trace messages of the “-d” option to the indicated file.
If the string console (case irrelevant) is given as the <trace file>, trace messages are redirected
to the console. As with the “-t” option, if the file exists, output is appended to it.

The “set Debug|Exit On Error|Ignore|Timing|Verbose|Warning|Warning As Error”
command activates (“on”) or deactivates (“off”) options. “Debug” corresponds to the “-d”
option, “Exit On Error” to the “-x” option, “Ignore” to the “-i” option, “Timing” to the “-T”
option, “Verbose” to the “-v” option, “Warning” to the “-E” option, and “Warning As Error”
to the “-e” option. See Section 3.1.8 [Verbose and debug mode], page 10, Section 3.1.10 [Exit
on error], page 10, Section 3.1.9 [Treatment of warnings], page 10, Section 3.1.4 [Output
format], page 9, and Section 3.1.7 [Local disabling control], page 9 for details.

4.3.7 Source command

This command inputs commands from another file.

Syntax:

Source <input file>;

Commands are read and executed from the indicated file, then control is returned to the
place after the “source” command. There is no restriction on the content of the sourced file;
especially, it may itself include other “source” commands.

If <input file> is not found, AdaControl will retry the same name with .aru appended. It is
a syntax error if the file is not found either.

If <input file> is a relative file path, it is taken relatively to the file where the “source”
command is given. Especially, if no path is specified, the sourced file will be taken from the
same directory as the sourcing file (irrespectively of where the command is being run from).

If the string console (case irrelevant) is given as the <input file>, commands are read from
the console until a “quit” command is given. This command is of course useful only from files,
and allows to pass temporarily control to the user in interactive mode.

4.3.8 Inhibit command

This command prevents execution of certain controls on particular units.

Syntax:

Chapter 4: Command language reference 29

Inhibit <rule name>|all ([all] <unit> {,[all] <unit>});

Controls refering to the given rule (or all rules if “all” is specified in place of a rule name)
for the indicated unit(s) are not performed. In addition, if “all” is specified in front of the unit
name, the unit will not be accessed at all, even from rules that follow call graphs, and could
thus access this unit while analyzing other units.

There are several reasons why you might want to inhibit a control of a rule for certain units:

• The unit is known not to obey the rule in many places, and you don’t want the output to
be cluttered with too many messages (of course, you’ll fix the unit in the near future!);

• The unit is known to obey the rule, execution of the rule is time-consuming, and you want
to save some processing time;

• The unit is known to raise an ASIS bug, and until you upgrade to the appropriate version
of GNAT, you don’t want to be bothered by the error messages.

The “all” option for a unit is intended for the last case, to prevent ASIS bugs from spoiling
any unit that calls something from an offending unit.

4.4 Example of commands

Below is an example of a file with multiple commands:

message "Searching Unchecked_Conversion";

search entitities (ada.unchecked_conversion);

set output uc_usage.txt;

go;

clear all;

message "Searching ’Address";

search entities (all ’Address);

set output address_usage.txt;

go;

This file will output all usages of Ada.Unchecked_Conversion into the file uc_usage.txt,
then output all usages of the ’Address attribute into the file address_usage.txt. Messages
are output to tell the user about what’s happenning.

Chapter 5: Rules reference 30

5 Rules reference

This chapter describes each rule currently provided by AdaControl. Note that the rules direc-
tory of the distribution contains a file named verif.aru that contains an example of a set of
rules appropriate to check on almost any software.

A general limitation applies to all rules. AdaControl is a static checking tool, and therefore
cannot check usages that depend on run-time values. For example, it is not possible to check
rules applying to an entity when this entity is aliased and accessed through an access value, or
rules applying to subprogram calls when the call is a dispatching call.

5.1 Abnormal Function Return

This rule controls functions that may not terminate normally, i.e. where Program_Error could
be raised due to reaching the end of the function without encountering a return statement.

5.1.1 Syntax

<control_kind> abnormal_function_return;

5.1.2 Action

The rule controls that the sequence of statements of each function body, as well as each of its
exception handlers, ends with:

• a return statement

• a raise statement (or equivalently, a call to Ada.Exceptions.Raise_Exception or
Ada.Exceptions.Reraise_Occurrence).

• a block statement, whose last statement of its sequence and any exception handler is one
of these;

• an if statement that includes an else path, and where the last statement of every path is
one of these;

• a case statement where the last statement of every path is one of these.

This is a sufficient (but of course not necessary) condition to ensure that no function raises
Program_Error due to reaching the end of its statements without encountering a return.

This rule can be specified only once.

Ex:

check abnormal_function_return;

5.1.3 Tip

This rule checks that a function always returns correctly, but does not prevent multiple return
statements in functions. If you want to ensure that there is exactly one return statement in
functions, and that this statement is always the last one, use this rule together with the rule
statements(function_return). See Section 5.49 [Statements], page 87.

5.2 Allocators

This rule controls the use of allocators (i.e. dynamic memory allocation).

5.2.1 Syntax

<control_kind> allocators

[(task|protected|<entity> {, task|protected|<entity>})];

Chapter 5: Rules reference 31

5.2.2 Action

If one or several <entity> are given, only allocators whose allocated type matches the <entity>
are controlled; as usual, the whole syntax for entities is allowed for <entity>. See Appendix A
[Specifying an Ada entity name], page 110. If “task” or “protected” is given, allocators for task
types or protected types (respectively) are controlled; otherwise all allocators are controlled.
This rule is especially useful for finding memory leaks, since it tells all the places where dynamic
allocation occurs.

Ex:

search allocators (standard.string);

check allocators (T’Class);

5.2.3 Tips

The type given in the rule must be a first named subtype, and the rule will also find allocators
that use a subtype of this type. If the type is declared within a generic package, the rule will
control all corresponding types from instantiations.

The type mentionned in the rule is the one following the new keyword, which is not necessarily
the same as the expected type in presence of implicit conversions like this:

type T is tagged ...;

type Class_Access is access T’Class;

X : Class_Access;

begin

X := new T;

This allocator will be found for type T, not for type T’Class.

5.3 Array Declarations

This rule controls properties of arrays, by enforcing a consistent value or range of values for the

lower or upper bound, or by limiting the possible size. It can also control various aspects of the

component type of the array.

5.3.1 Syntax

<control_kind> array_declarations (first, <value> | <bounds>);

<control_kind> array_declarations (last, <value> | <bounds>);

<control_kind> array_declarations (dimensions, <value> | <bounds>);

<control_kind> array_declarations (length, <bounds>);

<control_kind> array_declarations (component, <compo_kind> {,<repr_cond>});

<bounds> ::= min|max <value> [, min|max <value>]

<compo_kind> ::= <entity>|<category>

<category> ::= () | access | array | delta | digits | mod | private |

protected | range | record | tagged | task

<repr_cond> ::= [not] packed | sized | component_sized

5.3.2 Action

The first parameter is a subrule keyword:

• “First” and “Last” control the lower (respectively upper) bound of each dimension of arrays
(even unconstrained array types). If a single value is specified without the “min” or “max”
modifiers, the subrule controls the bounds that are not exactly this value; otherwise, it
controls the bounds that are smaller than the given “min” value or greater than the given
“max” value. It is possible, but not required to specify both “min” and “max”. If this
subrule is given both for “search” and for “check”, the value(s) for “search” is interpreted

Chapter 5: Rules reference 32

as the prefered one, and the value(s) for “check” is interpreted as an alternative acceptable
one; i.e., it is a warning if the value is the one given for “check”, and an error if it is neither.
In short:

search array_declarations (first, 1);

check array_declarations (first, min -1, max 1);

will be silent if the lower bound of an array is 1, it will issue a warning if it is in the range
-1 .. 1, and an error otherwise.

• “Dimensions”controls the number of dimensions of arrays. If a single value is specified
without the “min” or “max” modifiers, the subrule controls arrays whose number of dimen-
sions is not exactly this value; otherwise, it controls arrays whose number of dimensions are
smaller than the given “min” value or greater than the given “max” value. It is possible,
but not required to specify both “min” and “max”. If this subrule is given both for “search”
and for “check”, the value(s) for “search” is interpreted as the prefered one, and the value(s)
for “check” is interpreted as an alternative acceptable one; i.e., it is a warning if the value
is the one given for “check”, and an error if it is neither. In short:

search array_declarations (Dimensions, 1);

check array_declarations (Dimensions, min 2, max 3);

will be silent for one-dimensional arrays, it will issue a warning for 2- and 3-dimensional
arrays, and an error otherwise.

• “Length” controls arrays that have a dimension whose number of elements is smaller than
the given “min” value or greater than the given “max” value (except for unconstrained
array types). At least one of “min” or “max” must be specified, but it is not required to
specify both.

• “Component” controls arrays whose component type is the indicated <entity>, or whose
component type belongs to the indicated <category>. If the <entity> is a subtype, only
arrays whose components are of that subtype are controlled. If the indicated <entity> is
a type, all arrays whose components are of that type (including subtypes) are controlled.
The meaning of <category> is:

• “()”: The component is of an enumerated type.

• “access”: The component is of an acces type.

• “array”: The component is of an array type.

• “delta”: The component is of a fixed point type (it is not currently possible to distin-
guish ordinary fixed point types from decimal fixed point types).

• “digits”: The component is of a floating point type.

• “mod”: The component is of a modular type.

• “private”: The component is of a private type (including private extensions).

• “protected”: The component is of a protected type.

• “range”: The component is of a signed integer type.

• “record”: The component is of an (untagged) record type.

• “tagged”: The component is of a tagged type (including type extensions).

• “task”: The component is of a task type.

If <repr cond> are specified, the rule controls only arrays to which all the corresponding
representation items apply:

• “packed”: A pragma Pack applies to the array.

• “not packed”: No pragma Pack applies to the array.

• “sized”: A size representation clause applies to the array.

Chapter 5: Rules reference 33

• “not sized”: No size representation clause applies to the array.

• “component sized”: A component size representation clause applies to the array.

• “not component sized”: No component size representation clause applies to the array.

This rule can be specified several times for the “component” subrule. For other subrules, it
can be specified at most once for each subrule and for each of “check”, “search” and “count”.
It is thus possible for each subrule to have a value considered a warning, and a value considered
an error.

Ex:

-- All arrays should start at 1:

check array_declarations (first, 1);

-- No arrray of more than 100 elements:

check array_declarations (length, max 100);

-- No empty array:

check array_declarations (length, min 1);

-- Arrays whose component type is private:

check array_declarations (component, private);

-- Packed arrays of Character

check array_declarations (component, Standard.Character, packed);

-- Packed arrays of record without size clause

check array_declarations (component, record, packed, not sized);

5.3.3 Tips

The subrule Max_Length ignores index constraints that are not static. Non static index con-
straints can be controlled with the rule Non_Static (Index_Constraint). See Section 5.33
[Non Static], page 70.

Requiring the same upper bound for all arrays is not very useful, but:

check array_declarations (last, min 1);

can be used to check that no array has a negative or zero upper bound.

5.4 Barrier Expressions

Although the language allows any expression as the barrier of a protected entry, it is generally

better to use only “simple” expressions. This rule controls the kind of constructs allowed in

barrier expressions.

5.4.1 Syntax

<control_kind> Barrier_Expressions ([<allowable> {, <allowable>}]);

<allowable> ::= <entity> | <keyword>

<keyword> ::= allocation | any_component | any_variable |

arithmetic_operator | array_aggregate | comparison_operator |

conversion | dereference | indexing |

function_attribute | local_function | logical_operator |

record_aggregate | value_attribute

Chapter 5: Rules reference 34

5.4.2 Action

Without parameters, the only elements allowed in barriers are references to boolean components
of the protected element and litterals (this corresponds to what is allowed for the Ravenscar
profile). Parameters specify other constructs that are allowed:

• Any <entity> (like a global variable, a function...) can be specified and is thus allowed. As
usual, the whole syntax for entities is allowed for <entity>. See Appendix A [Specifying an
Ada entity name], page 110.

• “allocation” allows use of allocators.

• “any component” allows use of protected components that are not of type
Standard.Boolean.

• “any variable” allows use of any variable (i.e. variables external to the protected element).

• “arithmetic operator” allows use of predefined arithmetic operators ("+", "**", etc.).

• “array aggregate” allows use of array aggregates.

• “comparison operator” allows use of predefined comparison and membership operators
("=", ">", in, etc.).

• “conversion” allows use of type conversions and type qualifications.

• “dereference” allows use of dereferencing of access types (both implicit and explicit deref-
erences).

• “indexing” allows use of array indexing and slices.

• “function attribute” allows use of attributes that are functions (like ’Pred, ’Image, etc.).

• “local function” allows use of (protected) functions declared in the same protected object.

• “logical operator” allows use of predefined logical operators and short-circuit forms (and,
or else, etc.).

• “record aggregate” allows use of record aggregates and extension aggregates.

• “value attribute” allows use of attributes that are simple values (like ’First, ’Terminated,
etc.).

This rule can be given only once for each of “check”, “search” and “count”.

Ex:

search barrier_expressions;

check barrier_expressions (logical_operator, comparison_operator,

any_component,

Pack.Global_State);

5.4.3 Tips

The goal of the “Simple Barrier” restriction from the Ravenscar profile is to ensure that evalu-
ation of barriers never raise exceptions. Even simple things like a qualified expression can raise
exceptions, but in practice more than the restriction of the Ravenscar profile can be “reasonably”
allowed.

Note that the various “operator” keywords allow only the use of predefined operators. If a
user defined operator should be allowed, provide it explicitely as an <entity>. There is no way
to allow any function call, since this would boil down to allowing pretty much anything, but you
can of course specify explicitely functions that can be called.

You can provide this rule both for “check” and “search”, but of course it makes sense only
if the set of allowed features for “search” is a superset of those allowed for “check”. This way,
the use of certain features can be interpreted only as a warning.

Chapter 5: Rules reference 35

5.5 Case Statement

This rule controls various metrics related to the case statement. It is intended for cases where

it is desired to limit the complexity of case statements.

5.5.1 Syntax

<control_kind> Case_Statement (<subrule>, <bound> [, <bound>]);

<subrule> ::= others_span | paths | range_span | values

<bound> ::= min | max <value>

5.5.2 Action

The first parameter is a subrule keyword. The second (and optionnally third) parameter give
the minimum and/or maximum allowed values (i.e. the rule will control values outside the
indicated interval). If not specified, the minimum value is defaulted to 0 and the maximum
value to infinity. The parameters controlled by each subrule are:

• “others span” controls the number of values covered by when others case alternatives.

• “paths” controls the number of paths (i.e. when branches).

• “range span” controls the number of values covered by ranges used as choices.

• “values” controls the number of values covered by the subtype of the case selector.

This rule can be specified at most once for each subrule and for each of “check”, “search”
and “count”. It is thus possible for each subrule to have a value considered a warning, and a
value considered an error.

Ex:

check Case_Statement (others_span, min 1);

search Case_Statement (others_span, min 5);

check Case_Statement (values, max 10);

check Case_Statement (paths, min 3, max 30);

5.5.3 Tips

To control that no range is used as a choice in a case statement:

check case_statement (range_span, max 0);

To control “when others” that cover no value at all:

check case_statement (others_span, min 1);

5.5.4 Limitations

If some characteristic of the case statement depend on a generic formal type, it is not possible
to control some of the features statically. Such cases are detected by the rule “uncheckable”.
See Section 5.53 [Uncheckable], page 94.

5.6 Characters

This rule makes sure that the program text does not use “undesirable” characters.

5.6.1 Syntax

<control_kind> characters [(<subrule> {, <subrule>})];

<subrule> ::= control | not_iso_646 | trailing_space | wide

Chapter 5: Rules reference 36

5.6.2 Action

The rule controls the occurrence in the source file of characters belonging to the classe(s) defined
by the subrules. Without parameters, all classes are controlled. The classes are defined as
follows:

• “control”: control characters that are allowed by the language (ASCII HT, ASCII VT and
ASCII FF).

• “not iso 646”: characters outside the ISO-646 set (aka ASCII).

• “trailing space”: space characters appearing at the end of the source line.

• “wide”: wide characters that are not in Standard.Character.

This rule can be given only once for each class of characters.

Ex:

check characters (control, trailing_space);

search characters (not_iso_646);

5.6.3 Limitations

With the “wide” subrule, the error message may seem to not always appear at the right place;
this depends on the encoding scheme used. For example, if your source contains (using bracket
encoding):

S : Wide_String := "["1041"]["1042"]";

it will appear to AdaControl as a string containing two characters, and therefore the error
message for the second wide character will point at two characters after the opening quote of
the string.

This rule controls only the characters in the source file; other means of having characters in
the corresponding classes (like using the ’Val attribute) are not controlled.

5.7 Comments

This rule controls comments that must, or must not, appear in certain cases.

5.7.1 Syntax

<control_kind> comments (pattern, "<pattern>" {, "<pattern>"});

<control_kind> comments (position, <value> | <bounds>);

<control_kind> comments (terminating {, "<pattern>" | begin | end});

<control_kind> comments (unnamed_begin, <kind> {, <kind>});

<bounds> ::= min|max <value> [, min|max <value>]

<kind> ::= [<condition>] <unit_kind>

<condition> ::= always | declaration | program_unit

<unit_kind> ::= all | procedure | function | entry | package | task

5.7.2 Action

The first parameter is a subrule name which detemines what is being controlled.

• “pattern” controls comments that match one of the given patterns (given as strings). Only
the “useful” part of the comment is matched against the patterns, i.e. the part after
the “--” and spaces following it. Patterns are given using the full Regexp syntax. see
Appendix B [Syntax of regular expressions], page 113 for details. Pattern matching is
always case insensitive.

This subrule is especially useful to find lines with comments like “TBSL” (To Be Supplied
Later) or “fixme”, which are often used to mark places where something should be done
before releasing the program.

Chapter 5: Rules reference 37

• “position” controls the starting position of comments. If a single value is specified without
the “min” or “max” modifiers, the subrule controls comments that do not start exactly at
the indicated column position; otherwise, it controls comments whose starting column is
smaller than the given “min” value or greater than the given “max” value. It is possible,
but not required to specify both “min” and “max”. If this subrule is given both for “search”
and for “check”, the value(s) for “search” is interpreted as the prefered one, and the value(s)
for “check” is interpreted as an alternative acceptable one; i.e., it is a warning if the value
is the one given for “check”, and an error if it is neither. In short:

search comments (position, 1);

check comments (first, min 1, max 6);

will be silent for comments that start in column 1, it will issue a warning for comments that
start at columns 2 to 6, and an error otherwise.

• “terminating” controls comments that are at the end of an otherwise non empty line (i.e.
that appear on the same line as a declaration or statement). If “begin” is specified, com-
ments appearing on a line that contains only a begin are allowed (not reported); similarly,
if “end” is specified, comments appearing on a line that contains only an end are allowed.
Otherwise, the other parameters are patterns that specify forms of comments that are al-
lowed. Patterns are given using the full Regexp syntax. see Appendix B [Syntax of regular
expressions], page 113 for details. Pattern matching is always case insensitive.

• “unnamed begin” controls begin of various constructs that do not have a comment that
repeats the name of the program unit associated to the begin. Except for spaces, the
comment must not contain anything else than the unit name.

The <condition> keyword determines circumstances where the comment is required:

• ”always” (default): the comment is always required.

• “declaration”: the comment is required only if the preceding declaration part is non-
empty (not counting pragmas).

• “program unit”: the comment is required only if the preceding declaration part con-
tains the declarations of other program units (subprograms, packages, protected ob-
jects, or tasks).

The <unit kind> keyword detemines the kind of program unit to which the rule applies
(“all” stands for all kinds). The subrule can be given only once of each kind of program
unit.

Ex:

check comments (pattern, "TBSL");

-- Report places where rules are disabled:

search comments (pattern, "##.* off");

-- End of line comments are not allowed, except for the

-- comment that repeats the name of a procedure on the "begin"

-- line, and special AdaControl comments

check comments (terminating, begin, "^ *##");

-- Named begin required for packages unless they have no

-- declaration, and subprograms if they have nested units

check comments (unnamed_begin, declaration package);

check comments (unnamed_begin, program_unit procedure);

check comments (unnamed_begin, program_unit function);

Chapter 5: Rules reference 38

5.7.3 Tips

Remember that a Regexp matches if the pattern matches any part of the identifier. Use “^”
and “$” to match the beginning (resp. end) of the comment, or both.

5.7.4 Limitations

This rule does not support wide characters outside the basic Latin-1 set.

5.8 Declarations

This rule controls usage of various kinds of declarations, possibly only those occurring at specified

locations.

5.8.1 Syntax

<control_kind> declarations (<subrule> {, <subrule>});

<subrule> ::= {<location_kw>} <declaration_kw>

<location_kw> ::= all | block | library | local | nested |

own | private | public | task_body

<declaration_kw> ::=

any_declaration |

abstract_function | abstract_procedure |

abstract_type | access_all_type |

access_constant_type | access_protected_type |

access_subprogram_type | access_task_type |

access_type | aliased_array_component |

aliased_constant | aliased_protected_component |

aliased_record_component | aliased_variable |

anonymous_subtype_allocator | anonymous_subtype_case |

anonymous_subtype_declaration | anonymous_subtype_for |

anonymous_subtype_indexing | array |

array_type | binary_modular_type |

character_literal | child_unit |

class_wide_constant | class_wide_variable |

constant | constrained_array_constant |

constrained_array_type | constrained_array_variable |

controlled_type | decimal_fixed_type |

defaulted_discriminant | defaulted_generic_parameter |

defaulted_parameter | deferred_constant |

derived_type | discriminant |

empty_private_part | empty_visible_part |

enumeration_type | entry |

exception | extension |

fixed_type | float_type |

formal_function | formal_package |

formal_procedure | formal_type |

function | function_call_renaming |

function_instantiation | generic |

generic_function | generic_package |

generic_procedure | handlers |

incomplete_type | in_out_generic_parameter |

in_out_parameter | initialized_protected_component |

initialized_record_component | initialized_variable |

Chapter 5: Rules reference 39

instantiation | integer_type |

library_unit_renaming | limited_private_type |

modular_type | multiple_names |

multiple_protected_entries | named_number |

non_binary_modular_type | non_identical_operator_renaming |

non_identical_renaming | non_joint_CE_NE_handler |

non_limited_private_type | not_operator_renaming |

null_extension | null_ordinary_record_type |

null_procedure | null_tagged_type |

operator | operator_renaming |

ordinary_fixed_type | ordinary_fixed_type_no_small |

ordinary_fixed_type_with_small | ordinary_record_type |

out_parameter | package |

package_instantiation | package_statements |

predefined_operator | private_extension |

procedure | procedure_instantiation |

protected | protected_entry |

protected_type | protected_variable |

record_type | renaming |

renaming_as_body | renaming_as_declaration |

self_calling_function | self_calling_procedure |

separate | signed_type |

single_array | single_protected |

single_task | subtype |

tagged_type | task |

task_entry | task_type |

task_variable | type |

unconstrained_array_constant | unconstrained_array_type |

unconstrained_array_variable | unconstrained_subtype |

uninitialized_protected_component | uninitialized_record_component |

uninitialized_variable | variable |

variant_part

5.8.2 Action

The <location kw> restricts the places where the occurrence of the declaration is controlled.
Several <location kw> can be given, in which case the declaration is controlled at places where
all the keywords apply. If there is no <location kw>, it is assumed to be “all”.

• all: puts no special restriction to the location. This keyword can be specified for readability
purposes, and if specified must appear alone (not with other <location kw>).

• block: only declarations appearing in block statements are controlled.

• library: only library level declarations are controlled.

• local: only local declarations are controlled (i.e. only declarations appearing in (generic)
packages, possibly nested, are allowed).

• nested: only declarations nested in another declaration are controlled (i.e. only library
level declarations are allowed).

• own: only declarations that are local to a (generic) package body are controlled.

• public: only declarations appearing in the visible part of (generic) packages are controlled.

• private: only declarations appearing directly in a private part are controlled.

• task_body: only declarations appearing directly in a task body are controlled. Note that

Chapter 5: Rules reference 40

it would not make sense to have a <location kw> for task specifications, since only entries
can appear there, and they cannot appear anywhere else.

The <declaration kw> specifies what kind of declaration to control:

• Declaration keywords that are Ada keywords match the corresponding Ada declarations.

• any_declaration controls all declarations. This is of course not intended to forbid all
declarations in a program (!), but counting all declarations can be quite useful.

• abstract_function and abstract_procedure control the declarations of abstract func-
tions and abstract procedures, respectively.

• abstract_type controls the declaration of non-formal abstract types.

• access_type controls all access type declarations, while access_subprogram_type,
access_protected_type, and access_task_type control only access to procedures or
functions, access to protected types, or access to task types, respectively. Similarly,
access_all_type control generalized access to variables types (aka "access all T", and
access_constant_type control generalized access to constants types (aka "access constant
T").

• aliased_variable and aliased_constant control the declarations of aliased variables or
constants, respectively.

• aliased_array_component controls the declaration of arrays (array types or single arrays)
whose components are declared aliased.

• aliased_record_component and aliased_protected_component control the declarations
of aliased record (respectively protected) components.

• anonymous_subtype_declaration controls the declarations of anonymous subtypes and
ranges that are part of some other declaration. Similarly, anonymous_subtype_allocator,
anonymous_subtype_case, anonymous_subtype_for, and anonymous_subtype_indexing

control anonymous subtype declarations and ranges that are part of allocators, case state-
ments (ranges in the when path), for loop statements, and indexing of slices or array
aggregates, respectively.

• array controls all array definitions (array types and single arrays), while array_type

controls only array types and single_array controls only single arrays (objects of an
anonymous array type). constrained_array_type controls only constrained array types,
while unconstrained_array_type controls only unconstrained array types. constrained_
array_variable controls variable declarations where the given (or anonymous) array type
is constrained, while unconstrained_array variable controls variable declarations where
the given (or anonymous) array type is unconstrained (and the constraint is provided by
the initial value). constrained_array_constant and unconstrained_array_constant do
the same with constants instead of variables.

• character_literal controls the declaration of new character literals, i.e. character literals
defined as part of the values of an enumeration type.

• child_unit controls the declaration of all child units.

• constant controls all constants, while class_wide_constant control the declaration of
constants of a class-wide type, and deferred_constant controls the declaration of deferred
constants.

• controlled_type controls the declaration of controlled types, i.e. descendants of
Ada.Finalization.Controlled or Ada.Finalization.Limited_Controlled. Note that
this includes also private types that are not visibly controlled.

• defaulted_parameter controls subprogram or entry (in) parameters that provide a default
value, while defaulted_generic_parameter controls generic formal objects that provide a
default value.

Chapter 5: Rules reference 41

• derived_type controls regular derived types, but not type extensions (derivations of tagged
types). These are controlled by extension and private_extension.

• discriminant controls all declarations of types with discriminants, while defaulted_

discriminants controls only those where defaults are provided for the discriminants.

• empty_private_part controls package specification with an empty private part, i.e. where
the word private appears, but the private part contains no declaration (even if it contains
pragmas).

• empty_visible_part controls package specifications that contain no declaration in the
visible part (before the word private if any), even if it contains pragmas.

• enumeration_type controls the declaration of enumeration types.

• exception controls exception declarations.

• fixed_type controls all declarations of fixed point types while ordinary_fixed_type con-
trols only ordinary (binary) fixed point types, ordinary_fixed_type_no_small controls
ordinary fixed point type without a representation clause for ’SMALL, ordinary_fixed_
type_with_small controls ordinary fixed point type with an explicit representation clause
for ’SMALL, and decimal_fixed_type controls only decimal fixed point types (those can
never have a representation clause for ’SMALL).

• float_type controls declarations of floating point types.

• formal_function, formal_package, formal_procedure, and formal_type control generic
formal functions, packages, procedures, and types, respectively.

• generic_function, generic_package, generic_procedure control generic function (re-
spectively package, procedure) declarations.

• handlers controls the presence of exception handlers in any handled sequence of statements.

• in_out_parameter and out_parameter control subprogram and entry parameters of
modes in out and out (respectively), while in_out_generic_parameter and out_generic_

parameter do the same for generic formal parameters

• incomplete_type controls incomplete type declaration.

• initialized_variable controls variable declarations that include an initialization expres-
sion, unless they are of a class-wide type since initialization is required in that case.

• instantiation controls all instantiations, while function_instantiation, package_

instantiation, procedure_instantiation control function (respectively package, pro-
cedure) instantiations.

• integer_type controls all declarations of integer types, while signed_type controls only
signed integer types, and modular_type controls only modular types (both kinds); binary_
modular_type controls only modular types whose modulus is a power of 2, and non_binary_

modular_type controls only modular types whose modulus is not a power of 2.

• initialized_record_component and initialized_protected_component control the
declaration of record (respectively protected) component that include a default ini-
tialization, while uninitialized_record_component and uninitialized_protected_

component control the declaration of record (respectively protected) component that do
not include a default initialization, unless they are of a limited type since initialization
would not be allowed in that case.

• limited_private_type controls limited private type declarations, while non_limited_

private_type controls regular (non limited) private type declarations.

• multiple_names controls declarations where more than one defining identifier is given in
the same declaration.

• multiple_protected_entries controls protected definitions (from protected types or sin-
gle protected objects) that have more than one entry declaration. Note that a protected
definition with a single entry family declaration is counted as a single entry declaration.

Chapter 5: Rules reference 42

• named_number controls declarations of named numbers, i.e. untyped constants.

• non_joint_CE_NE_handler controls exception handlers whose choices include Constraint_
Error or Numeric_Error, but not both. This is intended for legacy Ada 83 code that
required to always handle these exceptions together; it makes little sense for Ada95 or
Ada2005 code (and to be honnest, this subrule is provided because Gnatcheck has it).

• null_extension controls record extensions (derived tagged types) that contain no new
elements. Similarly, null_ordinary_record_type and null_tagged_type control ordinary
records and tagged types that contain no elements. Note that the record definitions may be
plain “null record” definitions, or full record definitions that contain only null components.
However, a definition is not considered null if it contains a variant part.

• null_procedure controls procedure declarations whose sequence of statements contain only
null statements (or blocks without declarations and containing only null statements).

• operator controls the definition of operators (things like "+"); note that the message is given
on the specification if there is an explicit specification, on the body otherwise. predefined_
operator controls only operator definitions that overload a predefined operator (like "+"

on a numeric type, for example).

• package_statements controls the presence of elaboration statements in the bodies of pack-
ages (or generic packages).

• private_extension controls private extensions, i.e. derivations from a tagged type with a
with private extension part.

• record_type controls all record type declarations (tagged or not), while ordinary_record_
type controls only non-tagged record types, and tagged_type controls only tagged record
types.

• renaming controls all renaming declarations, while renaming_as_body controls only those
that are renamings as bodies of subprograms, renaming_as_declaration controls only
those that are regular renamings of subprograms (i.e. not as bodies), operator_renaming
controls only those that are renamings of an operator, not_operator_renaming controls
only those that are not renamings of an operator, function_call_renaming controls re-
naming of the result of a function call, and library_unit_renaming controls renaming of
library units. non_identical_renaming controls only renamings where the new name and
the old name are not the same, and non_identical_operator_renaming does the same,
but only for renamings of operators.

• self_calling_function controls functions whose body contains only a single return state-
ment, and the return expression is a (recursive) call to the same function. Similarly, self_
calling_procedure controls procedures whose body contains only a single statement which
is a (recursive) call to the same procedure. Note that this corresponds to bodies automati-
cally generated by gnatstub.

• subtype controls all explicit subtype declarations (i.e. not all anonymous subtypes that
appear at various places in the language), while unconstrained_subtype controls only the
subtype declarations that do not include a constraint.

• task controls task type declarations as well as single tasks declarations while single_task
and task_type control only single task declarations or task type declarations respectively
(and similarly for protected).

• type controls all type (but not subtype) declarations.

• variable controls all variable declarations, while uninitialized_variable controls only
variable declarations that do not include an initialization expression, unless they are of a
limited type since initialization would not be allowed in that case. class_wide_variable
controls the declarations of variables of a class-wide type. task_variable and protected_

variable control task and protected objects (respectively), whether given with a named or
anonymous type.

Chapter 5: Rules reference 43

• variant_part controls variant parts in record defintions.

Ex:

search declarations (task, exception);

check declarations (block procedure, block function, block package);

check declarations (public task);

5.8.3 Tips

Certain keywords are not exclusive, and it may be the case that several keywords apply to the
same declaration; in this case, they are all reported. For example, if you specify:

check declarations (record_type, tagged_type);

tagged types will be reported both as “record type” and “tagged type”.

Some of the keyword do not seem very useful; it would be strange to have a programming rule
that prevents all type declarations... But bear in mind that the <location kw> can be used to
restrict the check to certain locations; moreover, AdaControl can be used not only for checking,
but also for searching; finding all type declarations in a set of units can make sense. As another
example, “search declarations (own variable);” will find all variables declared directly in package
bodies.

Some modifiers do not make sense with certain declarations; for example, a “private
out parameter” is impossible (a parameter occurs in a subprogram declaration, not directly
in a private part). This is not a problem as far as the rule is concerned, but don’t expect to find
any...

5.8.4 Limitation

In some rare cases, AdaControl may not be able to evaluate the modulus of a mod-
ular type definition, thus preventing correct operation of “binary modular type” and
“non binary modular type” subrules. Such cases are detected by the rule “uncheckable”. See
Section 5.53 [Uncheckable], page 94.

5.9 Default Parameter

This rule checks usage (or non-usage) of defaulted parameters.

5.9.1 Syntax

<control_kind> default_parameter (<place>, <formal>, <usage>);

<place> ::= <entity> | calls | instantiations

<formal> ::= <formal name> | all

<usage> ::= used | positional | not_used

5.9.2 Action

The rule controls subprogram calls or generic instantiations that use the default value for the
indicated parameter, or conversely don’t use it, either in positional notation or in any notation.
If a subprogram is called, or a generic instantiated, whose name matches <entity>, and it has a
formal whose name is <formal name>, then:

• If the string used (case irrelevant) is given as the third parameter, the rule reports when
there is no corresponding actual parameter (i.e. the default value is used for the parameter).

• If the string positional (case irrelevant) is given as the third parameter, the rule reports
when there is an explicit corresponding actual parameter (i.e. the default is not used for
the parameter), and the actual uses positional (not named) notation.

Chapter 5: Rules reference 44

• If the string not_used (case irrelevant) is given as the third parameter, the rule reports
when there is an explicit corresponding actual parameter (i.e. the default is not used for
the parameter), independently of whether it uses positional or named notation.

Alternatively, the <entity> can be specified as calls, to control all calls or instantiations,
to control all instantiations. The <formal name> can be replaced by all, in which case all
formals are controlled.

Ex:

check default_parameter (P, X, used);

check default_parameter (P, Y, not used);

search default_parameter (all, all, positional);

5.9.3 Tip

If the <entity> is a generic subprogram, it is also possible to give a formal parameter (a parameter
of the subprogram, not a generic parameter) as the <formal name>; in this case, all instantiations
of the indicated generic subprogram will be controlled for the use of the indicated parameter.

5.10 Dependencies

This rule controls dependencies of units (i.e. with clauses, parents...), either according to a set
of allowed units, or by count.

5.10.1 Syntax

<control_kind> dependencies (others, <unit> {,<unit>});

<control_kind> dependencies (<counter>, <bound> [, <bound>]);

<counter> ::= raw | direct | parent

<bound> ::= min | max <value>

5.10.2 Action

The kind of action depends on the specified subrule.

The “others” subrule controls semantic dependencies to units other than those indicated.
This subrule can be specified only once, and at least one unit must be given.

Other subrules control that the number of various dependencies is whithin a specified range.
The second (and optionnally third) parameter give the minimum and/or maximum allowed
values (i.e. the rule will control values outside the indicated interval). If not specified, the
minimum value is defaulted to 0 and the maximum value to infinity.

• “raw” controls the number of units textually given in with clauses. Redundant with clauses
are counted, and a child unit counts for one.

• “direct” controls the number of different units that this unit really depends on: if a unit is
mentionned in several with clauses, it is counted only once, but if a child unit is mentionned,
all parents of this child unit are added to the count.

• “parent” counts the number of parents of the current unit. A root unit has no parent, a
child of a root unit has one parent, etc.

Ex:

check dependencies (others, Ada.Text_IO);

check dependencies (raw, max 15);

-- child units should not be nested more than 5 levels:

check dependencies (parent, max 5);

Chapter 5: Rules reference 45

-- units that depend on nothing:

search dependencies (direct, min 1);

5.11 Directly Accessed Globals

This rule checks that global variables in package bodies are accessed only through dedicated

subprograms. Especially, it can be used to prevent race conditions in multi-tasking programs.

5.11.1 Syntax

<control_kind> directly_accessed_globals [(<kind> {,<kind>})];

<kind> ::= plain | accept | protected

5.11.2 Action

The rule controls global variables declared directly in (generic) package bodies that are accessed
outside of dedicated callable entities (i.e. procedure or function, possibly protected, protected
entries, and accept statements).

This rule can be specified only once. The parameters indicate which kinds of callable entity
are allowed: “plain” for non-protected subprograms, “protected” for protected subprograms,
and “accept” for accept statements). Without parameters, all forms are allowed.

More precisely, the rule ensures that the global variables are read from a single callable entity,
and written by a single callable entity. Note that the same callable entity can read and write a
variable, but in this case no other callable entity is allowed to read or write the variable.

• Subprograms used to read/write the variables must be declared at the same level as the
variable itself (i.e. not nested), and must not be generic.

• Protected subprograms used to read/write the variables must both be part of the same
single protected object, which must be declared at the same level as the variable itself (i.e.
not nested); they are not allowed to be declared in a protected type, since if there are several
protected objects of the same type, mutual exclusion would not be enforced.

• accept statements used to read/write the variables must both be part of the same single
task object, which must be declared at the same level as the variable itself (i.e. not nested);
they are not allowed to be declared in a task type, since if there are several task objects of
the same type, mutual exclusion would not be enforced.

In short, this rule enforces that all global variables are accessed by dedicated access subpro-
grams, and that only those subprograms access the variables directly. If given with the keyword
“protected” and/or “accept”, it enforces that global variables are accessed only by dedicated
protected subprograms or tasks, ensuring that no race condition is possible.

Ex:

check directly_accessed_globals

5.11.3 Tips

Note that this rule controls global variables from package bodies, not those from the specification.
This is intended, since it makes little sense to declare a variable in a specification, and then
require it not to be accessed directly, but through provided subprograms. Obviously, in this
case the variable should be moved to the body.

Note that AdaControl can check that no variable is declared in a package specification with
the following rule:

check usage (variable, from_spec);

see Section 5.58 [Usage], page 100 for details.

Chapter 5: Rules reference 46

5.11.4 Limitations

AdaControl cannot check entities accessed through dynamic names (dynamic renaming, ac-
cess on aliased variables). Use of such constructs is detected by the rule “uncheckable”. See
Section 5.53 [Uncheckable], page 94.

5.12 Duplicate Initialization Calls

This rule checks that some procedures (notably initialization procedures) are not called several

times in identical conditions.

5.12.1 Syntax

<control_kind> duplicate_initialization_calls (<entity> {, <entity>});

5.12.2 Action

This rule controls calls to initialization procedures that are duplicated. The <entity> parameters
are the initialization procedures to be controlled. As usual, the whole syntax for entities is
allowed for <entity>. See Appendix A [Specifying an Ada entity name], page 110.

More precisely, the initialization procedures must follow one of these patterns:

• The procedure only has in parameters. All actual parameters used in calls are static, and
not two calls have the same values for all parameters.

• The procedure has exactly one out parameter (and no in out parameter). Not two calls
refer the same actual variable for the out parameter.

The rule controls any violation of these patterns. If a procedure passed as parameter does
not have a profile that corresponds to one of the above patterns, it is an error.

Ex:

check duplicate_initialization_calls (pack.init_proc);

5.12.3 Limitation

If a variable passed as an out parameter is not statically determinable, it is not controlled by
the rule. Such a case is detected by the rule “uncheckable”. See Section 5.53 [Uncheckable],
page 94.

5.13 Entities

This rule is used to control usage of Ada entities, i.e. any declared element (type, variables,

packages, etc).

5.13.1 Syntax

<control_kind> entities (<entity> {, <entity>});

5.13.2 Action

This rule controls all uses of the indicated entities. As usual, the whole syntax for entities is
allowed for <entity>. See Appendix A [Specifying an Ada entity name], page 110. This rule is
not intended to replace cross-references, but can be quite handy to check, for example, that a
program does not contain any more calls to debugging procedures before fielding it.

Note that this rules reports on the use of the entity, not the name: if an entity has been
renamed, it will be found under its various names. Similarly, if the given entity is a generic
unit or an entity declared inside a generic unit, all corresponding uses in all instances will be
reported.

Ex:

Chapter 5: Rules reference 47

search entities (Debug.Trace);

check entities (Ada.Text_IO.Float_IO.Put);

The second line will report on any use of a Put from any instantiation of Float_IO.

5.13.3 Tips

This rule can also be used to check for all occurrences of certain attributes with the “all
<Attribute>” syntax. For example, the following will report on any usage of ’Unchecked_
Access:

check entities (all ’Unchecked_Access);

In certain contexts, only a limited set of the Ada predefined units is allowed. For example,
it can be useful to forbid entities from Standard, System, or entities defined in special needs
annexes. The rules directory of Adacontrol contains files with Entities rules that forbid the use
of various predefined Ada units. Comment out the lines for the units that you want to allow.
You can then simply “source” these files from your own rule file (or copy the content) if you
want to disallow these units. See Section 6.2 [Rules files provided with AdaControl], page 105.

5.13.4 Limitation

Gnat defines Unchecked_Conversion and Unchecked_Deallocation as separate entities, rather
than renamings of Ada.Unchecked_Conversion and Ada.Unchecked_Deallocation. As a con-
sequence, it is necessary to specify explicitely both forms if you want to make sure that the
corresponding generics are not used.

5.14 Entity Inside Exception

This rule controls entities that appear within exception handlers.

5.14.1 Syntax

<control_kind> entity_inside_exception (<spec> {, <spec>});

<spec> ::= [not] <entity> | calls | entry_calls

5.14.2 Action

This rule controls exception handlers that contain references to one or several Ada entities
specified as parameters. If the keyword “calls” is given, it stands for all subprogram and entry
calls. If the keyword “entry calls” is given, it stands for all entry calls (task or protected). If
an <entity> (or “calls” or “entry calls”) is preceded by the keyword “not”, it is not included in
the list of controlled entities (i.e. the entity is allowed in the exception hhandler). This allows
to make exceptions to a more general specification of an entity, or to allow calls to well-defined
procedures if the keyword “calls” is given.

Ex:

-- No Put_Line in exception handlers:

check entity_inside_exception (ada.text_io.put_line);

-- No entry calls in exception handlers:

check entity_inside_exception (entry_calls);

-- No calls allowed, except to the Report_Exception procedure:

check entity_inside_exception (calls, not Reports.Report_Exception);

-- No Put allowed, except the one on Strings:

check entity_inside_exception (all Put,

not Ada.Text_IO.Put{Standard.String});

Chapter 5: Rules reference 48

5.15 Exception Propagation

This rule controls that certain program units are guaranteed to never propagate exceptions, or

that local exceptions cannot propagate out of their scope.

5.15.1 Syntax

<control_kind> exception_propagation

(local_exception);

<control_kind> exception_propagation

([<level>,] interface, <convention> {, <convention> });

<control_kind> exception_propagation

([<level>,] parameter, <entity> {, <entity>});

<control_kind> exception_propagation

([<level>,] task);

<control_kind> exception_propagation

(<level>, declaration);

5.15.2 Action

The “local exception” subrule controls a design pattern that ensures that a local exception
cannot propagate outside the scope where it is declared. If an exception is declared within a
block, a subprogram body, an entry body, or a task body, then this body must have either
a handler for this exception or for others; this handler must not reraise the exception; and
no handler is allowed to raise explicitely the exception. The subrule controls explicit raise
statements and calls to Raise_Exception and Reraise_Occurrence, but it does not control
exceptions raised as a consequence of calling other subprograms.

The other subrules control subprograms, tasks, or all declarations that can propagate ex-
ceptions, while being used in contexts where it is desirable to ensure that no exception can be
propagated.

A subprogram or task is considered as not propagating if:

1. it has an exception handler with a “when others” choice

2. no exception handler contains a raise statement, nor any call to Ada.Exception.Raise_

Exception or Ada.Exception.Reraise_Occurrence.

3. no declaration from its own declarative part propagates exceptions.

A declaration is considered propagating if it includes elements that could propagate excep-
tions. This is impossible to assess fully using only static analysis, therefore the <level> parameter
determines how pessimistic (or optimistic) AdaControl is in determining the possibility of ex-
ceptions. Possible values of the <level> parameter, and their effect, are:

• 0: expressions in declarative parts are not considered as propagating (anything allowed, this
is the default value for “interface”, “parameter” and “task”. Not allowed for “declaration”).

• 1: all function calls (including operators) in declarations are considered as potentially prop-
agating exceptions, except those appearing in named number declarations or scalar types
declarations, since those are required by the language to be static.

• 2: same as 1, plus every use of variables in expressions is considered as potentially propa-
gating.

• 3: same as 2, plus any declaration of objects (constants or variables) is considered potentially
propagating (not very useful for “declaration”).

These subrules serve several purposes:

• The “interface” subrule analyzes all subprograms to which an Interface or Export pragma
applies (with the given convention(s)), and reports on those that can propagate exceptions.

Chapter 5: Rules reference 49

Since it is dangerous to call an Ada subprogram that can propagate exceptions from a
language that has no exception (and especially C), any such subprogram should have a
“catch-all” exception handler.

• The “parameter” subrule accepts one or more fully qualified formal parameter names (i.e. in
the form of the parameter name prefixed by the full name of its subprogram, see Appendix A
[Specifying an Ada entity name], page 110). The subrule reports any subprogram that can
propagate exceptions and is used as the prefix of a ’Access or ’Address attribute that
appears as part of an actual value for the indicated formal. Similarly, the indicated formal
can also be the name of a formal procedure or function of a generic. In this case, the rule
will report on any subprogram that can propagate exceptions and is used as an actual in
an instantiation for the given formal.

Many systems (typically windowing systems) use call-back subprograms. Although the
native interface is generally hidden behind an Ada binding, the call-back subprograms will
eventually be called from another language, and like for the “interface” subrule, any such
subprogram should have a “catch-all” exception handler.

• The “task” subrule reports any task that can propagate exceptions.

Since tasks die silently if an exception is propagated out of their body, it is generally
desirable to ensure that every task has an exception handler that (at least) reports that the
task is being completed due to an exception.

• The “declaration” subrule reports any declaration that can propagate exceptions, irrespec-
tively of where it appears. In this case, the specification of <level> is required and cannot
be 0.

It is sometimes desirable to make sure that no declaration raises an exception, ever.

Ex:

-- Make sure that C-compatible subprograms don’t propagate exceptions:

check exception_propagation (interface, C);

-- Parameter CB of of procedure Pack.Register is used as a call-back

-- Make sure that not procedure passed to it can propagate exceptions.

check exception_propagation (parameter, Pack.Register.CB);

-- Make sure that tasks do not die silently due to unhandled exception:

check exception_propagation (task);

-- Make sure that no exception is raised by elaboration of declarations:

check exception_propagation (2, declaration);

The first example will report on any subprogram to which a pragma Interface (C,...)

applies that can propagate exceptions.

If Proc is a procedure that can propagate exceptions, the second example will report on every
call like:

Pack.Register (CB => Proc’Access);

The third example will report on any task that can terminate silently due to an unhandled
exception.

The fourth example will report on any declaration that makes use of function calls or vari-
ables.

5.15.3 Tips

Note that the registration procedure for a call-back can be designated by an access type, but in
this case, use the name of the formal for the access type. For example, given:

Chapter 5: Rules reference 50

package Pack is
type Acc_Proc is access procedure;
type Acc_Reg is access procedure (CB : Acc_Proc);

...

Ptr : Acc_Reg := ...;

You can give a rule such as:

check exception_propagation (parameter, Pack.Acc_Reg.CB);

All procedures registered by a call to Pack.Ptr.all will be considered.

5.15.4 Limitations

An exception may be raised in a subprogram considered as not propagating by this rule, if an
exception handler calls a subprogram that propagates an exception.

The rule will not consider subprograms whose body is missing, or that are not statically
known (i.e. if a subprogram is registered through a dereference of a pointer to subprogram), like
in the following example:

Pack.Register (CB => Pointer.all’Access);

Due to a weakness of the ASIS standard, references to subprograms that appear in dispatching
calls are not considered. This limitation will be removed as soon as we find a way to work around
this problem, but the issue is quite difficult!

These last two cases are detected by the rule “uncheckable”. See Section 5.53 [Uncheckable],
page 94.

5.16 Expressions

This rule controls usage of various kinds of expressions.

5.16.1 Syntax

<control_kind> expressions (<subrule> {, <subrule>});

<subrule> ::= {<category>} <expression_kw>

<expression_kw> ::=

and | and_then |

array_aggregate | array_partial_others |

array_others | complex_parameter |

explicit_dereference | fixed_multiplying_op |

implicit_dereference | inconsistent_attribute_dimension |

inherited_function_call | mixed_operators |

or | or_else |

parameter_view_conversion | prefixed_operator |

real_equality | record_partial_others |

record_aggregate | record_others |

slice | type_conversion |

universal_range | unqualified_aggregate |

xor

<category> ::=

<> | () | range | mod | delta | digits | array |

record | tagged | access | new | private | task | protected

5.16.2 Action

This rule controls usage of certain forms of expressions. The rule can be specified at most once
for each subrule (i.e. subrules that accept categories can be specified once for each combination
of categories and expression keyword).

Chapter 5: Rules reference 51

Categories are used by certain subrules to further refine the control. They define categories
of types to which they apply:

• “<>”: Any type

• “()”: Enumerated types

• “range”: Signed integer types

• “mod”: Modular types

• “delta”: Fixed point types (no possibility to differentiate ordinary and decimal fixed point
types yet).

• “digits”: Floating point types

• “array”: Array types

• “record”: (untagged) record types

• “tagged”: Tagged types (including type extensions)

• “access”: Access types

• “new”: Derived types

• “private”: Private types

• “task”: Task types

• “protected”: Protected types

The subrule define the kind of expression being controlled:

• and, or, xor, and_then, and or_else control usage of the corresponding logical operator
(or short circuit form).

• array_aggregate and record_aggregate control array and record aggregates, respectively,
while unqualified_aggregate controls aggregates (both arrays and records) that do not
appear directly within a qualified expression

• array_others and record_others control the occurrence of a when others => association
in array and record aggregates, respectively.

• array_partial_others and record_partial_others do the same, but only if there are
other associations in addition to the when others => in the aggregate.

• complex_parameter controls complex expressions used as actual parameters in subprogram
(or entry) calls. A complex expression is any expression that includes a function call (in-
cluding operators). This rule is not applied to the parameters of operators, since otherwise
it would forbid any expression with more than a single operator.

• explicit_dereference controls explicit dereferences of access values (i.e. with an explicit
.all).

• fixed_multiplying_op controls calls to predefined fixed-point multiplication and division
(regular fixed-point or decimal-fixed point).

• implicit_dereference controls implicit dereferences of access values (i.e. when the .all is
omitted).

• inconsistent_attribute_dimension controls when no dimension is explicitely given for
a ’First, ’Last, ’Range or ’Length attribute and the attribute applies to a multi-
dimensional array, or conversely, when an explicit dimension is given, but the attribute
applies to a one-dimensional array.

• inherited_function_call controls calls to functions that have been inherited by a derived
type and not redefined. If a category is specified, only calls whose result type belongs to
the category are controlled.

Derived types are followed, i.e. the “real” category from the original type is used for the
matching; as a consequence, the “new” category cannot be specified for this subrule.

Chapter 5: Rules reference 52

• mixed_operators controls expressions that involve several different operators, without
parentheses. In a sense, it extends the language rule that forbids mixing and and or in
logical expressions to all other operators.

• prefixed_operator controls calls to operators that use prefixed notation (i.e. "+"(A, B)).
If a category is specified, only calls whose result type belongs to the category are controlled.

Derived types are followed, i.e. the “real” category from the original type is used for the
matching; as a consequence, the “new” category cannot be specified for this subrule.

• real_equality controls usage of predefined exact equality or inequality (“=” or “/=”)
between real (floating point or fixed point) values.

• slice controls usage of array slices.

• type_conversion controls all (sub)type conversions, while parameter_view_conversion

controls conversions that appear as out or in out actual parameters. One or two categories
can be specified; if only one category is specified, only conversions whose result type belong
to that category are controlled. If two categories are specified, only conversions whose souce
type belongs to the first category and whose target type belong to the second category are
controlled.

Derived types are followed, i.e. the “real” category from the original type is used for the
matching; as a consequence, the “new” category cannot be specified for this subrule.

• universal_range controls discrete ranges that are a part of an index constraint, constrained
array definition, or for-loop parameter specification (but not type or subtype defintions),
and whose bounds are both of type universal integer.

Ex:

search expressions (real_equality, slice);

check expressions (mixed_operators);

-- Find all conversions between integer and floating point types

search expression (range digits conversion);

-- Find all conversions from a fixed point type:

search expressions (delta <> conversion);

-- Find all view conversions between array types:

search expressions (array parameter_view_conversions);

5.16.3 Tips

The real_equality subrule does not control calls to an equality operator that has been defined
by the user; actually, it would make little sense to write a function and then forbid its use!
However, if control of calls to such a function is desired, it can be easily accomplished by using
the entities rule. See Section 5.13 [Entities], page 46.

“inherited function call” controls only function calls. For procedure calls, see rule
Section 5.49 [Statements], page 87.

5.17 Global References

This rule controls accesses to global elements that may be subject to race conditions, or otherwise

shared.

5.17.1 Syntax

<control_kind> global_references (<Ref_Kind> {, <Root>});

Chapter 5: Rules reference 53

<Ref_Kind> ::= all | multiple | multiple_non_atomic

<Root> ::= <entity> | function | procedure | task | protected

5.17.2 Action

This rule controls access to global variables from several entities (the roots). The <entity> must
be subprograms, task types, single task objects, protected types, or single protected objects. As
usual, the whole syntax for entities is allowed for <entity>. See Appendix A [Specifying an Ada
entity name], page 110. The special keywords function, procedure, task, and protected are
used to refer to all functions, procedures, tasks, and protected entities, respectively.

If the first parameter (<Ref Kind) is all, all references to global elements from the indicated
entities are reported. If the first parameter is multiple, only global elements that are accessed
by more than one of the indicated entities (i.e. shared elements) are reported. Note however
that if a reference is found from a task type or protected type, it is always reported, since there
are potentially several objects of the same type. If the first parameter is multiple_non_atomic,
references reported are the same as with multiple, except that global variables that are atomic
or atomic_components and written from at most one of the indicated entities are not reported.
Note that this latter case corresponds to a safe reader/writer use of atomic variables.

This rule follows the call graph, and therefore finds references from subprogram and protected
calls made (directly or indirectly) from the indicated entities. However, calls to subprograms
from the Ada standard library are not followed.

Ex:

-- Find global variables used by P1 or P2:

search global_references (all, P1, P2);

-- Find possible race conditions:

check global_references (multiple, task, protected);

This rule can be given several times, and conflicts (with multiple) are reported on a per-rule
basis, i.e. given:

check global_references (multiple, P1, P2);

check global_references (multiple, P1, P3);

the first rule will report on global variables shared between P1 and P2, and the second rule
will report on global variables shared between P1 and P3.

5.17.3 Tips

The notion of “global” is relative, i.e. it designates every variable whose scope encloses (strictly)
the indicated entities. This means that a same reference may or may not be global, depending
on the indicated entity. Consider:

procedure Outer is
Inner_V : Integer;

procedure Inner_P is
begin

Inner_V := 1;

end Inner_P;

begin
Inner_P;

end Outer;

The rule

check global_references (all, outer);

will not report any global reference, while the rule

Chapter 5: Rules reference 54

check global_references (all, outer.inner_p);

will report a reference to Inner_V. This is as it should be, since there is no race condition if
several tasks call Outer, while there is a risk if several tasks (declared inside Outer) call Inner_P.

Specifying:

check global_references (all, function);

will report on any function that access variables outside of their scope, i.e. all functions that
have potential side effects. On the other hand, this check must follow the whole call graph for
any function encountered, and can therefore be quite costly in execution time.

5.17.4 Limitations

Calls through pointers to subprograms and dispatching calls are unknown statically; they are
assumed to not access any global. Such calls are detected by the rule “uncheckable”. See
Section 5.53 [Uncheckable], page 94.

5.18 Header Comments

This rule controls that every compilation unit starts with a standardized comment.

5.18.1 Syntax

<control_kind> header_comments (minimum, <comment lines>);

<control_kind> header_comments (model, "<file name>");

5.18.2 Action

If the keyword “minimum” is given as first parameter, this rule controls that every compilation
unit starts with at least the number of comment lines indicated by the second parameter. If
several forms of headers are possible, checking that the headers follow the project’s standard
requires manual inspection, but this rule is useful to control that unit headers have not been
inadvertantly forgotten.

If the keyword “model” is given as first parameter, the second parameter is a string, inter-
preted as a file name. If the file name is not an absolute path, it is interpreted as relative to
the directory of the file that contains the rule, or to the current directory if the rule is given on
the command line. Each line of the indicated file is a regular expression, and the rule controls
that the corresponding line of the source file matches the expression. See Appendix B [Syntax
of regular expressions], page 113. In addition, it is possible to specify a repetition for a line. If
the first character of a line is a ’{’, the line must have the following syntax:

{<min>,[<max>]}

where <min> and <max> specify the minimum and maximum number of occurrences of the
pattern in the line that follows this one. <min> must be at least 0, and <max> must be at least
1, and be equal or greater than <min>. If <max> is omitted, it means that the line may occur
any number of times.

As a convenience, if the first character of a line is a ’*’ it means that the next line is a
pattern that can occur any number of times (same as {0,}). If the first character is a ’+’, it
means that the next line is a pattern that must occur at least once (same as {1,}). If the first
character is a ’?’, it means that the next line is an optional pattern (same as {0,1}).

Note that the repetition lines all start with a special character which is not allowed at the start
of a regular expression; there is therefore no ambiguity. Everything after the special character
(or the closing ’}’) is ignored, and can be used to provide comments.

This rule can be given at most once with “minimum” for each of “check”, “search”, and
“count”. The rule can be given only once with “model” (but it can be given together with one
or more “minimum” rules).

Chapter 5: Rules reference 55

Ex:

check header_comments (minimum, 10);

search header_comments (model, "header.pat");

count header_comments (minimum, 20);

This makes an error for every unit that starts with less than 10 comment lines, and a warning
for units that do not follow the pattern contained in the file header.pat. A count of units that
start with less than 20 comment lines is reported.

Example of a pattern file:

{1,3} 1 to 3 occurrences of next line

^--$

^-- Author: .+$

^-- Date: \d{2}/\d{2}/\\d{4}$

5.18.3 Tips

Remember that the lines of the file are regular expressions; every character that is specially
interpreted (like “+”, “*”, etc.) must be quoted with “\” if it must appear textually. To ease
the process of generating the model file, the directory source contains a script file for sed named
makepat.sed; if you run this script on a file that contains a standard header, it will produce a
pattern file where each line starts with “^”, ends with “$”, and every special character is quoted
with “\”.

When the model contains an indication of repeated lines (“*”), the repetition is not “greedy”,
i.e. matching will stop as soon as what follows the repetition matches. This is very useful to
check header comments that have sections, but where you don’t want to impose a precise content
to each section. Imagine for example that the structure is:

• A comment with “HISTORY”

• Any number of comment lines

• A comment with “AUTHORS”

• Any number of comment lines

the following pattern will work as expected:

^-- HISTORY$

*

^--

^-- AUTHORS

*

^--

5.18.4 Limitation

Since the “model” subrule analyzes the content of comments, there is a conflict with the disabling
mechanism of AdaControl that uses special comments. See Section 4.2.4 [Disabling controls],
page 25.

Specifically, line disabling is not possible at all. Block disabling is possible, provided the
disabling line is allowed by the pattern. In short, if you want to be able to disable this rule, the
first lines of the model file should be:

?

--##

i.e. allow an optional block disabling comment as the first line of the file. Note that there is
no need to re-enable this rule, since it is checked only at the start of a compilation unit.

Chapter 5: Rules reference 56

5.19 Improper Initialization

This rule enforces a coding pattern that ensures that variables and out parameters are properly

initialized befor use.

5.19.1 Syntax

<control_kind> improper_initialization [(<subrule> {,<subrule>})]

<subrule> ::= {<extra>} <target>

<extra> ::= access | limited | package

<target> ::= out_parameter | variable | initialized_variable

5.19.2 Action

This rule controls variables and/or out parameters that are not “properly” initialized, i.e. those
that are not “safely” initialized, those that have a useless initialization in their declaration, and
those where the value is known to be used before having been assigned.

A variable (or out parameter) is considered safely initialized if there is an initialization
expression in its declaration, or if it is given a value in the first statements of the corresponding
body, before any “non-trivial” statement. The goal is not to perform a complete data-flow
analysis, but rather to follow a design pattern where all variables are initialized before entering
the “active” part of the algorithm. This makes it easier to ensure that variables are properly
initialized.

“Trivial statements” are:

• null statements;

• assignment statements;

• procedure calls;

• return statements;

• if and case statements, unless they contain a nested non-trivial statement.

The <target> parameters determines what is to be checked:

• out_parameter controls that out parameters are safely initialized before the first non-trivial
statement, and before every (trivial) return statement.

• variable controls that local variables are safely initialized before the first non-trivial state-
ment.

• initialized_variable controls variables that are safely initialized before the first non-
trivial statement, but also have an explicit (and therefore useless) explicit initialization in
their declaration.

In all cases, variables used in trivial statements before being initialized are reported.

A variable is considered initialized if it is the target of an assignment statement, or if it is
used as an actual for an out (but not in out) parameter of a procedure call. Variables assigned
in if or case statements must receive a value in all paths to be considered initialized after the
statement. Note that the variable must be assigned to globally, i.e. assigning to some elements
of an array, or some fields of a record, does not count as an initialization of the variable.

Variables declared immediately within a (generic) package specification or body are not
checked, unless the modifier “package” is specified (quite often, package state variables are
initialized through calls to dedicated procedures).

Normally, the rule does not control objects of an access types, or arrays whose components
are of an access type, since these are always initialized by the compiler. Similarly, the rule
does not control objects of a limited type, since global assignment is not available for them.

Chapter 5: Rules reference 57

The <extra> modifiers access and limited force the controlling of these two kinds of objects,
respectively.

This rule can be given only once for each value of <target>. Without parameters, it is
equivalent to giving all, without any <extra>.

Ex:

check improper_initialization (out_parameter);

check improper_initialization (access limited variable);

search improper_initialization (initialized_variable);

5.19.3 Limitations

Due to a weakness of the ASIS standard, dispatching calls and calls to procedures that are
attributes are not considered for the initialization of variables. Note that for attributes, only
’Read and ’Input have an out parameter.

In the rare case where a variable is initialized by a dispatching call or an attribute call, this
limitation will result in a false positive. Such a case is detected by the rule “uncheckable”. See
Section 5.53 [Uncheckable], page 94. It is then easy to disable the rule for this variable. See
Section 4.2.4 [Disabling controls], page 25.

The rule analyzes only initializations and uses that are directly in the unit, not those from
nested units, since these are in the general case not statically checkable.

There are other cases where an object is automatically initialized by the declaration, like
controlled types that have redefined the Initialize procedure, records where all components
have a default initialization, etc. The rule does not consider these as automatically initialized,
as it does for access types. Maybe later...

5.20 Instantiations

This rule controls all instantiations of a generic, or only instantiations that are made with specific
values of the parameters. Control can be restricted to instantiations in specified places.

5.20.1 Syntax

<control_kind> instantiations (<generic_spec>);

<generic_spec> ::= {<location_kw>} <entity> {, <formal_spec>}

<formal_spec> ::= <entity> | <category> | <> | =

<location_kw> ::= all | block | library | local | nested |

own | private | public | task_body

<category> ::= () | access | array | delta | digits | mod |

private | protected | range | record | tagged | task

5.20.2 Action

The rule controls instantiations of the specified <entity>. As usual, the whole syntax for entities
is allowed for <entity>. See Appendix A [Specifying an Ada entity name], page 110.

The <location kw> restricts the places where the occurrence of the instantiation is controlled.
Several <location kw> can be given, in which case the instantiation is controlled at places where
all the keywords apply. If there is no <location kw>, it is assumed to be “all”.

• all: puts no special restriction to the location. This keyword can be specified for readability
purposes, and if specified must appear alone (not with other <location kw>).

• block: only instantiations appearing in block statements are controlled.

• library: only library level instantiations are controlled.

• local: only local instantiations are controlled (i.e. only instantiations appearing in (generic)
packages, possibly nested, are allowed).

Chapter 5: Rules reference 58

• nested: only instantiations nested in another declaration are controlled (i.e. only library
level instantiations are allowed).

• own: only instantiations that are local to a (generic) package body are controlled.

• public: only declarations appearing in the visible part of (generic) packages are controlled.

• private: only instantiations appearing directly in a private part are controlled.

• task_body: only instantiations appearing directly in a task body are controlled. Note that
it would not make sense to have a <location kw> for task specifications, since instantiations
are not allowed there.

An instantiation matches if it appears at a specified location (if any) and either:

1. No <formal spec> is given in the rule

2. The actual parameters of the instantiation match the corresponding <formal spec>, in order
(there can be more actual parameters in the instantiation than specified in the rule). An
actual parameter matches an <entity> at a given place if it is the same entity, or if the
<entity> designates a (sub)type and the actual is a subtype of this type. As usual, the
whole syntax for entities is allowed for <entity>. See Appendix A [Specifying an Ada entity
name], page 110. In addition, it matches if the actual is a type name that belongs to the
indicated category:

• “()”: The parameter is of an enumerated type.

• “access”: The parameter is of an acces type.

• “array”: The parameter is of an array type.

• “delta”: The parameter is of a fixed point type (it is not currently possible to distinguish
ordinary fixed point types from decimal fixed point types).

• “digits”: The parameter is of a floating point type.

• “mod”: The parameter is of a modular type.

• “private”: The parameter is of a private type (including private extensions).

• “protected”: The parameter is of a protected type.

• “range”: The parameter is of a signed integer type.

• “record”: The parameter is of an (untagged) record type.

• “tagged”: The parameter is of a tagged type (including type extensions).

• “task”: The parameter is of a task type.

In addition, two special signs can be given instead of an <entity> (or <category>): a box
(<>) matches any actual parameter (i.e. it stands for any value), and an equal sign (=)
matches if there has been already an instantiation with the same value for this parameter
(i.e. it matches the second time it is encountered).

If an actual is an expression (which is possible only for a formal in object), it cannot be
matched.

Ex:

-- Check all instantiations of Unchecked_Deallocation:

search instantiations (ada.unchecked_deallocation);

-- Check all instantiations of Unchecked_Conversion from or to String:

check instantiations (ada.unchecked_conversion, standard.string);

check instantiations (ada.unchecked_conversion, <>, standard.string);

-- Check all instantiations of Unchecked_Conversion from address

-- to an integer type:

Chapter 5: Rules reference 59

check instantiations (ada.unchecked_conversion, system.address, range);

-- Check that Unchecked_Conversion is instantiated only once

-- for any pair of arguments:

check instantiations (ada.unchecked_conversion, =, =);

5.20.3 Tips

The various forms of <formal spec> make the rule quite powerful. For example:

-- Not two instantiations of Gen with the same first parameter:

check instantations (Gen, =);

-- Not two instantiations of Gen with the same first and third parameter:

check instantiations (Gen, =, <>, =);

-- Not two instantiations of Gen with the same first parameter if the

-- second parameter is Pack.Proc:

check instantiations (Gen, =, Pack.Proc);

-- Not two instantiations of Gen with the same first parameter if the

-- second parameter is any procedure named Proc:

check instantiations (Gen, =, all Proc);

Note that a generic actual wich is a subtype matches all types (and subtypes) above it.
Therefore,

check instantiations (ada.unchecked_deallocation (standard.natural));

will find only instantiations that use Natural, while:

check instantiations (ada.unchecked_deallocation (standard.integer));

will find instantiations that use either Integer, Positive, or Natural.

5.20.4 Limitation

Gnat defines Unchecked_Conversion and Unchecked_Deallocation as separate entities, rather
than renamings of Ada.Unchecked_Conversion and Ada.Unchecked_Deallocation. As a con-
sequence, it is necessary to specify explicitely both forms if you want to make sure that the
corresponding generics are not instantiated.

5.21 Insufficient Parameters

This rule controls calls to subprograms and entries where the values of parameters does not
provide sufficient information to the reader to correctly identify the parameter’s purpose.

5.21.1 Syntax

<control_kind> insufficient_parameters (<max_allowed> {, <entity>});

5.21.2 Action

<max allowed> is the maximum number of allowed “insufficient” parameters (can be 0). The
<entity> parameters designate enumeration types whose values should be included in the check.
As usual, the whole syntax for entities is allowed for <entity>. See Appendix A [Specifying an
Ada entity name], page 110.

An actual parameter is deemed "insufficient" if it is given in positional (as opposed to named)
notation, it is an expression whose primaries are all numeric literals, or enumeration literals
belonging to one of the types passed as parameters to the rule (Standard.Boolean for example).

Chapter 5: Rules reference 60

This rule can be given once for each of check, search, and count. This way, it is possible to
have a level considered a warning (search), and one considered an error (check).

Ex:

search Insufficient_Parameters (1, Standard.Boolean);

check Insufficient_Parameters (2, Standard.Boolean);

5.21.3 Tips

This rule does not apply to operators that use infix notation, nor to calls to subprograms that
are attributes, since named notation is not allowed for these.

This rule controls the use of positional parameters according to their values; it is also possible
to control the use of positional parameters according to the number of parameters with the rule
style (positional_association). See Section 5.50 [Style], page 89.

Note also that this rules applies only to calls, while style (positional_association) ap-
plies to all forms of associations.

5.22 Local Hiding

This rule controls declarations that hide an outer declaration with the same name.

5.22.1 Syntax

<control_kind> local_hiding [(<subrule> {,<subrule>})];

<subrule> ::= {<exception>} strict | overloading | overloading_short

<exception> ::= not_operator | not_enumeration

5.22.2 Action

If “strict” is given (or if there is no subrule), the rule controls strict hiding (an inner subprogram
that overloads an outer one is not considered hiding). If “overloading” or “overloading short”
is given, only subprograms that overload another subprogram in the same scope or in an outer
scope are controlled. Note that following the normal Ada model, the declarations of enumeration
literals are considered functions (and thus controlled).

If “not operator” is mentionned, the subrule does not apply to the declarations of operators
(i.e. things like “"+"”). If “not enumeration” is mentionned, the subrule does not apply to the
hiding/overloading of enumeration literals by other enumeration literals (the rule still applies to
the hiding/overloading of functions by enumeration litterals, for example).

“overloading” and “overloading short” behave the same, except for the way occurrences are
reported. When a construct that overloads several other constructs is encountered, “overloading”
will issue a message for each overloaded construct, while “overloading short” will issue a single
message mentionning how many constructs are overloaded, and a pointer to the last one.

This rule can be given only once for “strict” and once for either “overloading” or
“short overloading”.

Ex:

Hiding: check local_hiding (strict);

Overloading: search local_hiding (not_operator overloading);

5.23 Max Blank Lines

This rule controls excessive spacing in the program text.

5.23.1 Syntax

<control_kind> max_blank_lines (<max allowed blank lines>);

Chapter 5: Rules reference 61

5.23.2 Action

This rule controls the occurrence of more than the indicated number of consecutive blank lines
(empty lines, or lines that contain only spaces). This rule can be given once for each of check,
search, and count. This way, it is possible to have a number of blank lines considered a warning
(search), and one considered an error (check). Of course, this makes sense only if the number
for search is less than the one for check.

Ex:

search max_blank_lines (2);

check max_blank_lines (5);

5.24 Max Call Depth

This rule controls the maximum depth of subprograms (or entry) calls.

5.24.1 Syntax

<control_kind> max_call_depth (<allowed depth> | finite);

5.24.2 Action

Roughly, the call depth is the number of frames that are stacked by a call: if you call a subpro-
gram that calls another subprogram that calls nothing, then the call depth is 2. Note that a call
to a task (not protected) entry has always a depth of 1, since the accept body that corresponds
to the entry is executed on a different stack.

The value of the parameter is the maximum allowed depth, i.e. the rule will trigger if the call
depth is strictly greater than the indicated value. A call to a (directly or indirectly) recursive
procedure is considered of infinite depth, and will be therefore signaled (with an appropriate
message) for any value of <allowed depth>. Alternatively, the keyword “finite” can be given in
place of the <allowed depth>: in this case, only calls to recursive subprograms will be signalled.

This rule can be given once for each of check, search, and count. This way, it is possible to
have a call depth considered a warning (search), and one considered an error (check). Of course,
this makes sense only if the number for search is less than the one for check.

Ex:

search max_call_depth (9);

check max_call_depth (finite);

5.24.3 Tip

It is possible to give the value 0 for <allowed depth>. Of course, it would not make sense to
forbid all subprogram calls in an Ada program, but this can be useful for inspection purposes,
since every call will be reported, and the message indicates the depth of the call.

If the message says that the call depth “is N”, it is exactly N. If the message says that the
call depth is “at least N”, it means that the call chain includes a call to a subprogram whose
depth is unknown (see “Limitations” below); “N” is the call depth if this subprogram does not
call anything else. Of course, the rule issues a message if this minimal value is greater than the
maximum allowed value.

5.24.4 Limitations

Calls to subprograms that are attributes are assumed to have a depth of 1. Calls to predefined
operators are assumed to be in-lined (i.e. a depth of 0).

Calls through pointers to subprograms and dispatching calls are unknown statically; in addi-
tion, some subprograms may not have a body available for analysis, like imported subprograms,

Chapter 5: Rules reference 62

or possibly subprograms from the standard library; they are all assumed to have a depth of 1.
Such calls are detected by the rule “uncheckable”. See Section 5.53 [Uncheckable], page 94.

5.25 Max Line Length

This rule controls that no line exceeds a given length.

5.25.1 Syntax

<control_kind> max_line_length (<max allowed length>);

5.25.2 Action

This rule controls the maximum length of source lines. This rule can be given once for each of
check, search, and count. This way, it is possible to have a length considered a warning (search),
and one considered an error (check). Of course, this makes sense only if the length for search is
less than the one for check.

Ex:

search max_line_length (80);

check max_line_length (120);

5.26 Max Nesting

This rule controls excessive nesting of declarations.

5.26.1 Syntax

<control_kind> max_nesting (<max allowed depth>);

5.26.2 Action

This rule controls the nesting of declarative constructs (like subprograms, packages, generics,
block statements. . .) that exceed a given depth. Nesting of statements (loop, case) is not
considered. This rule can be given once for each of check, search, and count. This way, it is
possible to have a level considered a warning (search), and one considered an error (check). Of
course, this makes sense only if the level for search is less than the one for check.

Ex:

search max_nesting (5);

check max_nesting (7);

5.27 Max Size

This rule controls the maximum size, in source lines of code, of various statements.

5.27.1 Syntax

<control_kind> max_size (<subrule>, <max allowed lines>);

<subrule> ::= accept | block | case | case_branch |

if | if_branch |loop | simple_block |

unnamed_block | unnamed_loop

5.27.2 Action

The first parameter is a subrule keyword that determines which statements are controlled:

• “block” controls all block statements, while “simple block” controls only blocks without a
declare part, and “unnamed block” controls only blocks without a name.

Chapter 5: Rules reference 63

• “loop” controls all loop statement, while “unnamed loop” controls only loops without a
name.

• “if branch” and “case branch” control the length of each alternative of an if (respectively
case statement.

For each kind of statement, the indicated value is the maximum allowed size of the full
statement; however, for branches (“if branch” and “case branch”) it is the maximum size of the
sequence of statements in the branch (i.e., the line that contains the elsif is not counted as part
of an “if branch”).

This rule can be given once for each of check, search, and count for each kind of statement.
This way, it is possible to have a level considered a warning (search), and one considered an
error (check). Of course, this makes sense only if the number of lines for search is less than the
one for check.

Ex:

check Max_Size (if_branch, 30);

search Max_Size (if_branch, 50);

check Max_Size (unnamed_loop, 20);

5.28 Max Statement Nesting

This rule controls the nesting of compound statements.

5.28.1 Syntax

<control_kind> max_statement_nesting (<subrule>, <max allowed depth>);

<subrule> ::= block | case | if | loop | all

5.28.2 Action

If one of “block”, “case”, “if”, or “loop” is specified, it controls the nesting of statements of the
same kind, i.e. an if within a loop within an if counts only 2 for the “if” keyword. If “all” is
specified, all kinds of compound statements are counted together, i.e. an if within a loop within
an if counts for 3. This rule can be given once for each of check, search, and count, and for each
of the subrules. This way, it is possible to have a level considered a warning (search), and one
considered an error(check). Of course, this makes sense only if the level for search is less than
the one for check.

Ex:

check max_statement_nesting (loop, 3);

search max_statement_nesting (all, 5);

5.29 Movable Accept Statements

This rule controls statements that are inside accept statements and could safely be moved
outside.

5.29.1 Syntax

<control_kind> movable_accept_statements (certain|possible {, <entity>})

5.29.2 Action

Since it is good practice to block a client for the shortest time possible, any action that does
not depend on the accept parameters should not be part of an accept statement.

Statements that involve synchronisation (delay statements, accept or entry calls...) are not
movable. Statements (including compound statements) that reference the parameters of the

Chapter 5: Rules reference 64

enclosing accept are not movable. In addition, statements that use one of the <entity> given
as parameters are never considered movable. As usual, the whole syntax for entities is allowed
for <entity>. See Appendix A [Specifying an Ada entity name], page 110. Note that if a
generic entity, or an entity declared in a generic package, is given, all statements that use the
corresponding instantiated entity are considered not movable.

If the first parameter of the rule is certain, only statements after the last non-movable
statement are reported. If the first parameter is possible, a simple data flow analysis is
performed, and every statement that does not reference a variable that appears to depend
(directly or indirectly) on a parameter is also reported.

Ex:

check movable_accept_statements (possible, Log.Report_Rendezvous);

5.29.3 Tips

The list of <entity> given to the rule can be, for example, procedures whose execution must be
part of the accept statement for logical reasons. They can also be global variables, when the
rendezvous is intended to prevent concurrent access to these variables.

5.30 Multiple Assignments

This rule controls groups of assignments that are either redundant of replaceable by aggregate
assignment.

5.30.1 Syntax

<control_kind> multiple_assignments (repeated);

<control_kind> multiple_assignments (groupable, <filter> {,<filter>});

<filter> ::= given <min_val> | missing <max_val> | ratio <min_val>

5.30.2 Action

This rule controls properties of groups of assignment statements. A group is made of consecutive
assignments, without any other intervening kind of statements (except null statements).

The first form (keyword “repeated”) controls when a same variable (or a same subcomponent
of a structured variable) is assigned several times in the same group of assignments. This form
of the rule can be given only once.

The second form (keyword “groupable”) controls assignments to different subcomponents of
a same structured variable; such assignments are often replaceable by a global assignment of an
aggregate to the variable. One or several <filter> parameters indicate under which conditions a
group is reported:

• “given”: <min val> (an integer value) indicates the minimum number of assigned subcom-
ponents that will trigger the rule (i.e. the rule is triggered if the number of assignments to
subcomponents of a same variable is greater or equal to the indicated value).

• “missing”: <max val> (an integer value) indicates the maximum number of subcomponents
not assigned that will trigger the rule (i.e. the rule is triggered if the number of subcompo-
nents not assigned to is lesser or equal to the indicated value).

• “ratio”: <min val> (an integer value) indicates the minimum percentage of assigned sub-
components that will trigger the rule (i.e. the rule is triggered if the percentage of assigned
subcomponents is greater or equal to the indicated value).

If several filters are given, the rule is triggered if all conditions are met (“and” logic). Note
however that this rule can be given several times, thus achieving “or” logic.

The rule is not triggered if the subcomponents belong to a stuctured variable of a limited
type, since global assignment would not be allowed in that case.

Chapter 5: Rules reference 65

Ex:

check Multiple_Assignments (repeated);

-- Warn if a at least 3 fields are given and at most

-- two fields are missing, or if 80% of the fields are given:

search multiple_assignments (groupable, given 3, missing 2);

search multiple_assignments (groupable, ratio 80);

5.30.3 Tip

Note that it is possible to give 1 for the “given” criterion; in this case, any assignment to parts
of a structured variable will be reported, only global assignment is allowed.

5.30.4 Limitations

As usual, AdaControl can control only static aspects of assignments. Therefore, it cannot control
assignments whose target is not statically known (like dynamic indexing of arrays). Slices are
always considered dynamic (the cases where it would be useful did not seem worth the additional
complexity).

Similarly, if the number of subcomponents is not statically determinable (dynamic arrays,
discriminated records), only the “given” criterion can be met.

5.31 Naming Convention

This rule controls the form of identifiers to make sure that they follow the project’s naming
conventions. Different naming conventions can be specified, depending on the kind of Ada
entity that the name is refering to.

5.31.1 Syntax

<control_kind> naming_convention

([root] [others] {<location>} <filter_kind>,

[case_sensitive|case_insensitive] [not] "<pattern>"

{, ...});

<location> ::= global | local | unit

<filter_kind> ::= All |

Type |

Discrete_Type |

Enumeration_Type |

Integer_Type |

Signed_Integer_Type |

Modular_Integer_Type |

Floating_Point_Type |

Fixed_Point_Type |

Binary_Fixed_Point_Type |

Decimal_Fixed_Point_Type |

Array_Type |

Record_Type |

Regular_Record_Type |

Tagged_Type |

Class_Type |

Access_Type |

Access_To_Regular_Type |

Access_To_Tagged_Type |

Chapter 5: Rules reference 66

Access_To_Class_Type |

Access_To_SP_Type |

Access_To_Task_Type |

Access_To_Protected_Type |

Private_Type |

Private_Extension |

Generic_Formal_Type |

Variable |

Regular_Variable |

Field |

Discriminant |

Record_Field |

Protected_Field |

Procedure_Formal_Out |

Procedure_Formal_In_Out |

Generic_Formal_In_Out |

Constant |

Regular_Constant |

Named_Number |

Integer_Number |

Real_Number |

Enumeration |

Sp_Formal_In |

Generic_Formal_In |

Loop_Control |

Occurrence_Name |

Entry_Index |

Label |

Stmt_Name |

Loop_Name |

Block_Name |

Subprogram |

Procedure |

Regular_Procedure |

Protected_Procedure |

Generic_Formal_Procedure |

Function |

Regular_Function |

Protected_Function |

Generic_Formal_Function |

Entry |

Task_Entry |

Protected_Entry |

Package |

Regular_Package |

Generic_Formal_Package |

Task |

Task_Type |

Task_Object |

Protected |

Protected_Type |

Protected_Object |

Chapter 5: Rules reference 67

Exception |

Generic |

Generic_Package |

Generic_Sp |

Generic_Procedure |

Generic_Function |

Renaming |

Object_Renaming |

Exception_Renaming |

Package_Renaming |

Subprogram_Renaming |

Procedure_Renaming |

Function_Renaming |

Generic_Renaming |

Generic_Package_Renaming |

Generic_Sp_Renaming |

Generic_Procedure_Renaming |

Generic_Function_Renaming

5.31.2 Action

The first parameter defines the kind of declaration to which the rule is applicable, and other
parameters are strings, interpreted as regular expressions that define the patterns that must be
matched. See Appendix B [Syntax of regular expressions], page 113.

If one or more <Location> keyword is specified, the pattern applies only to identifiers declared
at the corresponding place. Otherwise, the pattern applies to all identifiers, irrespectively of
where they are declared. The definition of locations is as follows:

• “unit”: The identifier is the defining name of a compilation unit.

• “global”: The identifier is declared in a package or a generic package, possibly nested in
other packages or generic packages.

• “local”: All other cases.

If “case sensitive” is specified, pattern matching considers casing. Otherwise (default or
“case insensitive”), casing is irrelevant. Note that the rule checks the name only at the place
where it is declared; casing might be different when the name is used later.

If a pattern is preceded by “not”, then the pattern must not be matched (i.e. the rule reports
when there is a match).

The rule will be activated if an identifier is declared that does not match any of the “positive”
patterns (the ones without “not”), or if it matches any of the ”negative” patterns (the ones with
a “not”). If only negative patterns are given, it is implicitely assumed that all other identifiers
are OK. In other words, accepted identifiers must have the form of (at least) one of the “positive”
patterns (if any), but not the form of one of the “negative” patterns.

The filter kinds are organized hierarchically, as reflected in the syntax above. To be valid,
the name must match the patterns specified for its own filter, and for all filters above it in the
hierarchy. For example, a modular type declaration must follow the rules (if specified) for “all”,
“type”,”discrete type”, “integer type” and “modular integer type”. However, if a filter kind is
preceded by “others”, the rule will apply only if there is no applicable positive pattern deeper in
the hierarchy; similarly, if a filter kind is preceded by “root”, no rule above it in the hierarchy
is considered (neither for itself nor its children). This is useful to make exceptions to a more
general rule. For example:

-- All identifiers must have at least 3 characters:

Chapter 5: Rules reference 68

check naming_convention (all, "...");

-- And start with an upper-case letter

-- (will not apply to types and access types, because of "others" and

-- other rules given below)

check naming_convention (others all, case_sensitive "^[A-Z]");

-- Exception to the rule for "all":

-- No minimum length for "for loop" identifiers, but must be

-- all uppercase

check naming_convention (root loop_control, case_sensitive "^[A-Z]+$");

-- Types must start with "t", then an upper-case letter:

-- (will not apply to access types, because of "others" and

-- other rule given below)

check naming_convention (others type, case_sensitive "^t[A-Z]");

-- Access types must start with "ta", then an upper-case letter:

check naming_convention (access_type, case_sensitive "^ta[A-Z]");

It is of course not necessary to specify all the filter kinds, nor to specify filters down to the
deepest level; if you specify a rule for “type”, it will be applied to all type declarations, whether
there is a more specific rule or not.

Subtypes and derived types must follow the rule for their respective original (full) type.
Incomplete type declarations are not checked, since their corresponding full declaration is (nor-
mally) checked. Private types (including of course the full declaration of a private type) follow
the rule for private types, not the rules for their full type view (otherwise it would be privacy
breaking).

Renamings are treated specially: if there is no explicit rule for a given renaming, the appli-
cable rule is the one for the renamed entity.

Ex:

-- Predefined name is forbidden:

check naming_convention (all, not "Integer");

-- Types must either start or end with T

check naming_convention (type, case_sensitive "^T_",

case_sensitive "_T$");

-- "Upper_Initials" naming convention:

check naming_convention

(all, case_sensitive "^[A-Z][a-z0-9]*(_[A-Z0-9][a-z0-9]*)*$");

-- All global variables must start with "G_"

check naming_convention (global variable, "G_");

5.31.3 Tips

The rule only checks the casing of identifiers at the place where they are declared. A useful com-
panion rule is “style (casing identifier, original)”, which ensures that every use of the identifier
will use the same casing as in the declaration. See Section 5.50 [Style], page 89.

Remember that a Regexp matches if the pattern matches any part of the identifier. Use “^”
and “$” to match the beginning (resp. end) of the name, or both.

Chapter 5: Rules reference 69

“class type” is applicable to subtypes that designate a class-wide type. Similarly, “ac-
cess to class type” is applicable to access types whose designated type is class-wide.

If you don’t want any special rule for renamings (not even the one that applies to the renamed
entity), specify:

check (renaming, "");

This imposes no constraint on renamings, but since it is specified explicitely, the implicit rule
for the renamed entity won’t apply.

The rules directory of Adacontrol contains two files named no_standard_entity.aru and
no_system_entity.aru. These are files that contain a naming convention rule that forbids the
declaration of names declared in packages Standard and System, respectively. You can simply
“source” these files from your own rule file (or copy the content) if you want to disallow these
identifiers.

Like usual, naming convention rule can be given multiple times, and can be disabled. How-
ever, consider the following:

Rule1 : check naming_convention (constant, "^c_");

Rule2 : check naming_convention (constant, "^const_");

The rule will trigger if a constant is declared that does not start with either “c ” or “const ”.
But here, we have two different rule labels. The message will refer to the first label encountered
in the rule file; this is the label that must be mentionned in a disabling comment, unless you
simply disable “naming convention”.

5.31.4 Limitations

This rule does not support wide characters outside the basic Latin-1 set.

5.32 No Operator Usage

This rule controls types whose usage profile indicates that they might be replaceable with enu-

merated types.

5.32.1 Syntax

<control_kind> no_operator_usage [(none | logical)];

5.32.2 Action

This rule controls integer types (both signed and modular) where no operator of the type is used
in the program (if the keyword none is given), or only logical operators (if the keyword logical

is given). If no parameter is given, the rule will control both cases.

An integer type that uses no operator at all is a good candidate to be replaced by an enu-
merated type. A modular type where only logical operators are used is likely to be used as a
bit field or a set, and is a good canditate for being replaced by an array of booleans.

This rule can be given only once for each value of the parameters.

Ex:

check no_operator_usage;

5.32.3 Tips

The rule does not make a distinction between predefined and user-defined operators. On the
other hand, only call to operators are considered, operators used for example as actual generic
parameters in instantiations are not considered.

The rule applies to private types whose full declaration is an integer type.

Chapter 5: Rules reference 70

5.33 Non Static

This rule controls that expressions used in certain contexts are static.

5.33.1 Syntax

<control_kind> non_static [(<subrule> {, <subrule>})];

<subrule> ::= constant_initialization | variable_initialization |

index_constraint | discriminant_constraint |

instantiation | index_check

5.33.2 Action

The <subrule> defines the elements that are required to be static:

• “constant initialization”: expressions used as initial value in constant declarations.

• “variable initialization”: expressions used as initial value in variable declarations.

• “index constraint”: expressions used in index constraints (aka array sizes).

• “discriminant constraint”: expressions used in discriminant constraints

• “instantiation”: expressions used as generic actual parameters in instantiations.

• “index check”: expressions used as indices must satisfy statically the index check. I.e., the
expression needs not be static, but it should be statically provable that the index check
cannot fail.

If no keyword is given, all contexts are controlled.

Ex:

check non_static (index_constraint);

5.33.3 Limitations

Currently, “constant initialization” and “variable initialization” do not control structured
(record and array) variables. For access variables, the initial value is considered static only
if it is a plain null. This may improve in future versions of AdaControl.

5.33.4 Tips

If all index and discriminant constraints are static, the space occupied by data structures is
computable from the program text. This rule is useful to enforce this in contexts where the
memory space must be statically determined.

5.34 Not Elaboration Calls

This rule controls that certain subprograms (or allocators) are called only during program ini-

tialization.

5.34.1 Syntax

<control_kind> not_elaboration_calls (<entity>|new {, <entity>|new});

5.34.2 Action

The <entity> parameters are callable entities (procedure, function or entry calls). As usual, the
whole syntax for entities is allowed for <entity>. See Appendix A [Specifying an Ada entity
name], page 110. This rule controls calls to the indicated callable entities, or allocators if “new”
is given, that are performed at any time except during the elaboration of library packages.

Ex:

search not_elaboration_calls (Data.Initialize, new);

Chapter 5: Rules reference 71

5.34.3 Limitations

Due to an (allowed by ASIS standard) limitation of ASIS-for-Gnat, the rule will not detect calls
to subprograms that are implicitely defined, like calling a "+" on Integer. Fortunately, it is
very unlikely that the user would want to forbid that kind of calls in non-elaboration code.

Note also that calls that cannot be statically determined, like calls to dispatching operations
or calls through pointers to subprograms cannot be detected either.

5.35 Not Selected Name

This rule controls that certain entities are always refered to using selected notation, even in the

presence of use clauses.

5.35.1 Syntax

<control_kind> not_selected_name

(<exception places>, <entity> {, <entity>});

<exception places> ::= none | unit | compilation | family

5.35.2 Action

A name is “selected” if it is prefixed by the name of the construct where it is declared. Only
one level of prefix is required, unless the prefix itself is the target of a not selected name rule.

The first parameter specifies places where the rule is not enforced, i.e. where simple notation
is allowed:

• “none”: selected notation is always required.

• “unit”: selected notation is not required within the program unit where the entity is de-
clared.

• “compilation”: selected notation is not required within the compilation unit where the
entity is declared.

• “family”: selected notation is not required within the compilation unit where the entity is
declared, nor within its (direct or indirect) children.

Other parameters indicate the <entity> to which the rule applies. As usual, the whole syntax
for entities is allowed for <entity>. See Appendix A [Specifying an Ada entity name], page 110.

Ex:

check not_selected_name (unit, all Instance);

search not_selected_name (none, Pack.T);

5.35.3 Tip

Note that, as usual, the entity can be given in the form “all name”. This is especially useful
for types that must always be declared with a special name (like Instance, Object, T) and are
intended to be always used with the name of the enclosing package.

5.36 Object Declarations

This rule controls various aspects of object (constants and variables) declarations.

5.36.1 Syntax

<control_kind> object_declarations (min_integer_span, <param> {, <param>});

<control_kind> object_declarations (volatile_no_address);

<control_kind> object_declarations (address_not_volatile);

<param> ::= [all | constant | variable] <value>

Chapter 5: Rules reference 72

5.36.2 Action

The action depends on the subrule.

• “min integer span”: controls that every object of an integer type has a subtype that covers
at least the indicated number of values. Different values can be specified for variables and
constants;“all” (the default value if no modifier is supplied) applies to both.

This subrule can be given only once for each combination of check/search/count and con-
stant/variable.

• “volatile no address”: controls variables that are the target of a pragma volatile, but have
no address clause. Constants are not controlled, since it would be very strange to have a
volatile constant...

Since this subrule has no parameters, it can be given only once.

• “address not volatile”: controls variables that have an address clause, but are not the target
of a pragma volatile. Constants are not controlled, since it would be very strange to have
a volatile constant...

Since this subrule has no parameters, it can be given only once.

Ex:

check object_declarations (min_integer_span, variable 5, constant 10);

count object_declarations (min_integer_span, 8);

-- Same value for variables and constants

search object_declarations (volatile_no_address);

search object_declarations (address_not_volatile);

5.36.3 Tip

The “min integer span” rule can be useful for detecting variables that should use an enumerated
type rather than an integer type.

5.36.4 Limitation

Due to a shortcomming of the ASIS interface, the subrules “volatile no address” and “ad-
dress not volatile” will not detect variables of a class-wide type that are volatile due to a
pragma volatile applying to the class-wide type. If the pragma applies to the variable, the
subrule will work correctly. A pragma volatile applied to a class-wide type is detected by the
rule “uncheckable”. See Section 5.53 [Uncheckable], page 94.

Declaring a class-wide type as volatile seems very peculiar anyway...

5.37 Parameter Aliasing

This rule controls aliased use of variables in subprogram calls.

5.37.1 Syntax

<control_kind> parameter_aliasing [([with_in] <level>)];

<level> ::= Certain | Possible | Unlikely

5.37.2 Action

This rule identifies calls where the same variable is given as an actual to more than one out or
in out parameter, like in the following example:

procedure Proc (X, Y : out Integer);

...

Chapter 5: Rules reference 73

Proc (X => V, Y => V);

If the modifier “with_in” is given, aliasing between out or in out parameters and in param-
eters is also considered. Although this is generally considered of less of an issue, it can lead to
unexpected results when the in parameter is passed by reference.

There are many cases where aliasing cannot be determined statically. The optional parameter
specifies how aggressively the rule will check for possible aliasings. Possible values are (case
irrelevant):

• Certain (default): Only cases where aliasing is statically certain are output.

• Possible: In addition, cases where aliasing may occur depending on the value of an indexed
component are output. These may or may not be true aliasing, depending on the algorithm.
For example, given:

Swap (Tab (I), Tab (J));

there is no aliasing, unless I equals J.

If all expressions used for indexing in both variables are static, the rule will be able to
eliminate the diagnosis of aliasing (if the values are different). This avoids unnecessary
messages in cases like:

Swap (Tab (1), Tab (2));

• Unlikely: In addition, cases where aliasing may occur due to access variables pointing to
the same variable are output. These may or may not be true aliasing, depending on the
algorithm, but should normally occur only as the result of very strange practices, like in
the following example:

type R is
record

X : aliased Integer;

end record;
X : R;

Y : Access_All_Integer := R.X’access;

...

P (X, Y.all);

There will be no false positive with “Certain”. There will be no false negative with “Unlikely”
(but many false positives). “Possible” is somewhere in-between.

The rule may be specified at most once for each value of the parameter. This allows for
example to “check” for “Certain” and “search” for “Possible”.

Ex:

check parameter_aliasing (with_in certain);

search parameter_aliasing (Possible);

Note that the rule is quite clever: it will consider partial aliasing (like a record variable as
one parameter, and one of its components as another parameter), and will not be fooled by
renamings.

5.37.3 Limitation

Due to a weakness of the ASIS standard, dispatching calls are not analyzed. Some calls cannot
obviously have aliasing (if there is only one parameter, or if there are no variables in the param-
eters f.e.); other calls are detected by the rule “uncheckable”. See Section 5.53 [Uncheckable],
page 94.

Chapter 5: Rules reference 74

5.38 Parameter Declarations

This rule controls various characteristics of the declaration of parameters for all callable entities
(i.e. functions, procedures and entries).

5.38.1 Syntax

<control_kind> parameter_declarations (<subrule>, [<value>,] {,<callable>});

<subrule> ::= max_parameters | max_defaulted_parameters |

min_parameters | single_out_parameter

<callable> ::= function | procedure | protected_entry |

protected_function | protected_procedure | task_entry

5.38.2 Action

The action depends on the first parameter:

• “min parameters”: Controls callable entities that have less parameters than the specified
required value (required).

• “max parameters”: Controls callable entities that have more parameters than the specified
allowed value (required).

• “max defaulted parameters”: Controls callable entities that have more parameters with
default values than the specified allowed value (required).

• “single out parameter”: Controls callable entities that have exactly one out parameter.
Such entities might be candidates to becoming functions. No value is allowed with this
subrule.

If one or more <callable kind> is specified after the <value>, the rule applies only to the
corresponding declaration(s), otherwise it applies to all callable entities.

This rule can be given once for each of check, search, and count for each subrule and each
kind of entity. This way, it is possible to have a level considered a warning (search), and one
considered an error (check).

Ex:

-- Callable entities should preferably not have more than 5

-- parameters, and in any case not have more that 10 parameters,

check parameter_declarations (max_parameters, 10);

search parameter_declarations (max_parameters, 5);

-- All functions must have parameters:

check parameter_declarations (min_parameters, 1, function);

-- A regular (not protected) procedure with one out parameter

-- should be replaced by a function

check parameter_declarations (single_out_parameter, procedure);

5.38.3 Tips

This rule applies to generic subprograms as well as to regular ones. On the other hand, it
does not apply to generic formal subprograms, since instantiations would only be possible with
subprograms which are supposed to have been already controlled.

Instantiations are also controlled; the number of parameters is taken from the corresponding
generic.

Note that this rule controls only “regular” parameters, not generic formal parameters.

Chapter 5: Rules reference 75

5.39 Potentially Blocking Operations

This rule controls usage of potentially blocking operations (as defined in LRM 9.5.1 (8..16))
from within protected operations.

5.39.1 Syntax

<control_kind> potentially_blocking_operations;

5.39.2 Action

The rule follows the call graph, starting from every protected operation, and identifies all (direct
and indirect) potentially blocking operations encountered. All protected types in the program
are controlled.

Of course, calls to standard subprograms (notably IOs) that are defined to be potentially
blocking are recognized.

Ex:

check potentially_blocking_operation;

5.39.3 Tips

This rule is very clever at finding potentially blocking operations resulting from external calls
(or requeues) to the current protected object, even if this happens through a long chain of
subprogram calls. Typically, this happens when a protected operation calls a subprogram,
which in turn makes a call to an operation of the same protected object. Such calls generally
result in dead-locks.

Therefore, it is advisable to run this rule on any program that exhibits mysterious (and hard
to find) deadlocks that seem to involve protected objects.

When a single protected object is being analyzed, the rule will diagnose a circularity if there
is a call to an operation of the same object in the call chain; however, if a protected type is being
analyzed, the rule will diagnose a circularity if there is a call to any object of the same type in
the call chain. Although it is possible to construct examples of this latter case where there is
no risk of deadlock, it is so contrieved that it certainly deserves being looked at. But since the
call is not 100% certain to be potentially blocking, the message will tell “possible external call”
instead of “external call” in this case.

5.39.4 Limitation

There is one case defined in LRM E.4(17) which is not recognized: remote subprograms calls.

Calls through pointers to subprograms and dispatching calls are unknown statically; they are
assumed to be non potentially blocking. Such calls are detected by the rule “uncheckable”. See
Section 5.53 [Uncheckable], page 94.

5.40 Pragmas

This rule controls usage of one or several specific pragmas.

5.40.1 Syntax

<control_kind> pragmas

(all|nonstandard|<pragma name> {, <pragma name>});

5.40.2 Action

If the special name “nonstandard” is given, then all implementation-defined and unrecognized
pragmas will be controlled. If the special name “all” is given, then all pragmas will be controlled.
Otherwise, the parameters are the names of pragmas to be controlled. Note that <pragma name>

Chapter 5: Rules reference 76

must be the simple name of the pragma, since pragma names are predefined and do not follow
the rules for regular Ada entities.

Ex:

check pragmas (elaborate_all, elaborate_body);

5.40.3 Tips

If “all” and/or “nonstandard” is given together with a specific pragma name in a “search” or
“check” rule, a message is issued only for the most specific occurrence. However, for “count”,
all appropriate occurrences are counted, i.e. given the following rules:

C1 : count pragmas (annotate);

C2 : count pragmas (nonstandard);

C3 : count pragmas (all);

Counter C1 will report the number of occurrences of pragma Annotate (a non-standard Gnat
pragma), counter C2 will report the number of non-standard pragmas (including occurrences of
Annotate), and counter C3 will report the total number of pragmas (including occurrences of
Annotate).

5.41 Record Declarations

This rule controls various aspects of the components of records.

5.41.1 Syntax

<control_kind> record_declarations (component, <compo_kind> {,<repr_cond>});

<compo_kind> ::= <entity>|<category>

<category> ::= () | access | array | delta | digits | mod | private |

protected | range | record | tagged | task

<repr_cond> ::= [not] in_variant | aligned | initialized | packed | sized

5.41.2 Action

The first parameter is a subrule keyword:

• “Component” controls record components whose type is the indicated <entity>, or whose
type belongs to the indicated <category>. If the <entity> is a subtype, only record com-
ponents that are of that subtype are controlled. If the indicated <entity> is a type, all
record components that are of that type (including subtypes) are controlled. The meaning
of <category> is:

• “()”: The component is of an enumerated type.

• “access”: The component is of an acces type.

• “array”: The component is of an array type.

• “delta”: The component is of a fixed point type (it is not currently possible to distin-
guish ordinary fixed point types from decimal fixed point types).

• “digits”: The component is of a floating point type.

• “mod”: The component is of a modular type.

• “private”: The component is of a private type (including private extensions).

• “protected”: The component is of a protected type.

• “range”: The component is of a signed integer type.

• “record”: The component is of an (untagged) record type.

• “tagged”: The component is of a tagged type (including type extensions).

• “task”: The component is of a task type.

Chapter 5: Rules reference 77

If <repr cond> are specified, the rule controls only record components to which all the
corresponding representation items apply:

• “in variant”: The component appears inside the variant part of the record.

• “not in variant”: The component appears inside the fixed part of the record.

• “aligned”: Either no component clause applies to the component, or the corresponding
first bit is a multiple of Storage_Unit.

• “not aligned”: A component clause applies to the component, and the corresponding
first bit is not a multiple of Storage_Unit.

• “initialized”: The component has a default initialization expression.

• “not initialized”: The component has no default initialization expression.

• “packed”: A pragma Pack applies to the component type.

• “not packed”: No pragma Pack applies to the component type.

• “sized”: A component clause applies to the component (therefore imposing the size).

• “not sized”: No component clause applies to the component.

This rule can be specified several times for the “component” subrule.

Ex:

-- All record components of a discrete type should be initialized:

check record_declarations (component, (), not initialized);

-- The size of all components of type Hardware_Types.Squeezed must

-- have a component clause:

check record_declarations (component, Hardware_Types.Squeezed, not sized);

-- Find unaligned components of a packed array type:

check record_declarations (component, array, packed, not aligned);

5.41.3 Tips

It may seem strange to have a rule with only one subrule, but we expect to add more in the
near future. Stay tuned...

5.41.4 Limitations

If “[not] aligned” is specified, there are some rare cases where AdaControl cannot evaluate
whether a component is aligned or not; in this case, it will “assume the worse” (i.e. report as
if the component had the specified alignment), thus creating possible false positives. Such cases
are detected by the rule “uncheckable”. See Section 5.53 [Uncheckable], page 94.

5.42 Reduceable Scope

This rule controls declarations that could be moved to some inner scope.

5.42.1 Syntax

<control_kind> reduceable_scope [(<subrule> {, <subrule>})];

<subrule> ::= {<restriction>} all | variable | constant |

subprogram | type | package |

exception | generic | use

<restriction> ::= no_blocks | to_body

Chapter 5: Rules reference 78

5.42.2 Action

The rule reports on any declaration that is referenced only from a single, inner scope, or in the
case of use clauses, it will report on packages named in a use clause whose elements are used
only in a single, inner scope. For entitities declared in package specifications, the rule reports if
they are used only from the corresponding package body.

The initialization of an object is considered a usage of the object at the place where it is
declared, thus preventing it from being moved. Therefore, constants and initialized variables
are never reported as being movable to inner scopes; they are reported as being movable to
package bodies however. Entities that are used as prefixes of a ’Access or ’Address attribute are
never reported, since moving them would change their accessibility level. Similarly, task objects
are not reported since moving them would change their master. Finally, dispatching operations
(primitive operations of tagged types) are not reported either, since they can be the target of
an “invisible” (dispatching) call.

If no <subrule> is given, or the <subrule> is “all”, all declarations are controlled. If no_blocks
is specified in front of a <subrule>, the rule will not consider blocks as possible targets for a
reduced scope for the corresponding category. If to_body is specified in front of a <subrule>,
the rule will report only elements declared in a package specification that could be moved into
the body. Specifying “all” explicitely is only useful in the case where there is a <restriction>.

As a side effect, the rule will report about entities that are declared but not used (i.e. whose
scope reduces to nothing).

Ex:

-- Types and variables shall be declared in the innermost scope

-- where they are useful:

check reduceable_scope (variable, type);

-- Packages and subprograms shall be declared in the innermost

-- scope where they are useful, but they are not allowed in blocks:

check reduceable_scope (no_blocks subprogram, no_blocks package);

-- Use clause should be as restricted as possible:

search reduceable_scope (use);

5.42.3 Tips

If you think that use clauses are acceptable, but should be limited to the smallest possible scope,
you would generally specify:

check unnecessary_use_clause;

check reduceable_scope (use);

5.42.4 Limitation

Currently, the rule does not report use clauses declared in a package specification that could be
moved to the body. Such clauses appear as “unused” (but of course, the compiler will complain
on the body if the clause is removed).

5.43 Representation Clauses

This rule controls usage of representation clause.

5.43.1 Syntax

<control_kind> representation_clauses [(<subrule> {, <subrule>})];

<subrule> ::= {<category>} <repr_kw> | [object] <attribute>

Chapter 5: Rules reference 79

<repr_kw> ::=

at | at_mod | enumeration |

fractional_size | incomplete_layout | non_aligned_component |

non_contiguous_layout | overlay | layout

<category> ::=

() | range | mod | delta | digits | array | record |

tagged | extension | access | new | private | task | protected

5.43.2 Action

Without parameter, the rule controls all representation clauses, otherwise it will control the
representation clauses given as parameter.

If a representation keyword or attribute is preceded by one or several categories, the rule
controls only the representation items that apply to types belonging to the categories (the type
of the component for the non_aligned_component subrule):

• “()”: Enumerated types

• “range”: Signed integer types

• “mod”: Modular types

• “delta”: Fixed point types (no possibility to differentiate ordinary and decimal fixed point
types yet).

• “digits”: Floating point types

• “array”: Array types

• “record”: (untagged) record types

• “tagged”: Root tagged types

• “extension”: Type extensions (tagged derived types)

• “access”: Access types

• “new”: Derived types

• “private”: Private types

• “task”: Task types

• “protected”: Protected types

The meaning of the representation keywords is:

• “at” controls address clauses given in Ada 83 style (“for XXX use at”).

• “at mod” controls alignment clauses given in Ada 83 style (“for T use record at mod XX;”).

• “enumeration” controls enumeration representation clauses.

• “fractional size” controls size clauses whose value is not an integral multiple of
System.Storage_Unit.

• “incomplete layout” controls record representation clauses that miss the specification of
some components of the record’s type.

• “layout” controls record representation clauses.

• “non aligned component” controls components that do not start on a storage unit bound-
ary. The message gives the offset (in bits) relative to the closest storage unit boundary.

• “non contiguous layout” controls record representation clauses where there are unused bits
between components (or before the first component). A message is issued for each “gap”
between components. In addition, if a size clause is given for the type, the rule will report
if there are unused bits at the end of the component (i.e. the size clause is bigger than the
end of the last component). In the case of variant records, there can be overlapping fields;
the rule will control only the bits that belong to no variant at all.

Chapter 5: Rules reference 80

• “overlay” controls address clauses (given in either style), where the value given is the
’Address of some other element.

In addition to these keyword, any specifiable attribute can be given (including the initial
“’”); the rule will control specifications of this attribute. If the modifier “object” is given before
the attribute, only attribute specifications for objects are controlled (as opposed to types for
example). Note that double attributes (like “’CLASS’INPUT”) can be given, and are considered
different from the simple attribute (“’INPUT”). It is of course possible to specify both.

Ex:

All_Addresses: check representation_clauses (at, ’address);

All_Input: check representation_clauses (’input, ’class’input);

Sized_Objects: check representation_clauses (object ’size);

count representation_clauses (’SIZE);

-- check layout clauses for derived types:

check representation_clauses (new layout);

-- check layout clauses for root tagged types and type extensions:

check representation_clauses (tagged extension layout);

5.43.3 Limitation

For the “fractional size” and “non contiguous layout” subrules, there are some rare cases where
AdaControl cannot evaluate the given size or elements of the record representation clause, and
thus not detect the corresponding situation. Such cases are detected by the rule “uncheckable”.
See Section 5.53 [Uncheckable], page 94.

5.43.4 Tips

The specifiable attributes (the ones that can be given as parameters to this rule) are ’Address,
’Size, ’Component_Size, ’Alignment, ’External_Tag, ’Small, ’Bit_Order, ’Storage_Pool,
’Storage_Size, ’Write, ’Output, ’Read, ’Input, and ’Machine_Radix. See Ada Reference
Manual 13.3(77).

Ada allows partial record representation clauses, i.e. it does not require all fields to be
specified. This means that if you add a field to a record and forget to update the associated
representation clause, there will be no compilation error. The “incomplete record” subrule is
handy for making sure that this does not happen.

Derived types with a representation clause may incur efficiently penalty, since calling an
inherited subrograms requires a change of representation. Representation clauses for tagged
types are dubious, since these types have hidden fields added by the compiler.

5.44 Return Type

This rule controls that certain form of types are not used for function results.

5.44.1 Syntax

<control_kind> return_type [(<subrule> {, <subrule>})];

<subrule> ::= class_wide | constrained_array |

protected | task |

unconstrained_array | unconstrained_discriminated

5.44.2 Action

This rule controls functions whose return type belongs to one of the indicated type kinds:

Chapter 5: Rules reference 81

• class_wide controls class-wide types

• constrained_array controls constrained array types

• unconstrained_discriminated controls types with discriminants (but not constrained
subtypes of such types)

• unconstrained_array controls unconstrained array types

• task controls task types, or composite types that include tasks as subcomponents.

• protected controls protected types, or composite types that include protected objects as
subcomponents.

If no subrule is specified, all type kinds are controlled. Note that more than one kind may
apply to a type: for example, a function can return a class-wide type with discriminants that
includes tasks and protected objects as subcomponents. In this case, several messages are issued
for the same type.

Ex:

check return_type (unconstrained_discriminated, unconstrained_array);

5.44.3 Limitations

There is a (very rare) case where AdaControl does not properly recognize that a function returns
a class-wide type. This is due to an ASIS bug fixed in version 5.05, and therefore appears only
with earlier versions of the compiler. This happens when a generic unit contains functions whose
return type is a generic indefinite formal type, and this generic is instantiated with a class-wide
type.

5.45 Side Effect Parameters

This rule controls calls that may depend on the order of evaluation of parameters.

5.45.1 Syntax

<control_kind> side_effect_parameters (<entity> {, <entity>});

5.45.2 Action

This rule controls subprogram calls or generic instantiations where different actual parameters
call functions known to have side effects. This is dangerous practice, since correct behaviour
may depend on a certain evaluation order of parameters, which is not specified by the language.

All <entity> are functions that are assumed to interfere, i.e. the rule will signal if any of
these functions is called more than once in the parameters of a call. As usual, the whole syntax
for entities is allowed for <entity>. See Appendix A [Specifying an Ada entity name], page 110.

It is allowed to give the name of a generic function, or of a function declared in a generic
package; in this case, all functions resulting from instantiations of these generics will be consid-
ered.

In the case of renamings, you must give the name of the original function; the rule will work
correctly if the call is made through a renaming of this function.

Ex:

check side_effect_parameters (F1);

check side_effect_parameters (G1, G2);

Here, F1 has a side effect, and the rule will signal if it is called more than once. G1 and G2
are assumed to interfere, and therefore the rule will signal if either is called more than once, or
if both are called. However, having a call that mentions F1 and G2 is OK.

Chapter 5: Rules reference 82

5.45.3 Limitation

Due to the size of internal structures, this rule may not be given more than 100 times.

Due to an unimplemented feature of ASIS-for-Gnat, this rule will not process defaulted
parameters, and hence not detect interferences due to calling a side-effect function through the
default value.

5.46 Silent Exceptions

This rule controls exception handlers that can cause exceptions to silently disappear.

5.46.1 Syntax

<control_kind> silent_exceptions (<element> {, <element>});

element ::= <control-item> | <report-item>

control-item ::= not | with <entity> | others

report-item ::= raise | explicit_raise | reraise | return |

requeue | <entity>

5.46.2 Action

The rule controls handlers that do not call one of the given subprograms (for example a reporting
procedure) nor perform other required operations, like returning, requeuing, or re-raising an
exception.

A parameter that starts with “not” or “with” is a <control-item> and defines wich exceptions
are controlled; the <entity> should be either an exception, or the name of a library unit (in
which case, it applies to all exceptions declared in the library unit). As usual, the whole syntax
for entities is allowed here. See Appendix A [Specifying an Ada entity name], page 110. If
the <entity> is (part of) a generic, then it applies to all exceptions from all corresponding
instantiations. If there is no <control-item>, then all exceptions are controlled.

If several <control-item> are given, the ones with “with” add exceptions to the set of controlled
exceptions, and the ones with “not” remove exceptions, in order, starting from the empty set
if the first <control-item> is a “with”, or starting from the set of all exceptions if the first
<control-item> is a “not”. See examples below.

“when others” handlers are always controlled, unless there is an explicit “not others”
<control-item>. A “with others” <control-item> can be specified to check only “when others”
handlers.

The other parameters are <report-item> and define the constructs considered “reporting”.
<entity> should correspond to an Ada callable entity or generic package; as usual, the whole
syntax for entities is allowed here. See Appendix A [Specifying an Ada entity name], page 110. If
a generic procedure or function is given, then all corresponding instances are considered reporting
subprograms. If a generic package is given, any instantiation (in an inner block of the handler)
is considered reporting. In addition, the special names “explicit raise”, “reraise”, “return” and
“requeue” mark raise statements with an explicit exception name, raise statements without an
exception name, return statements, and requeue statements (respectively) as reporting. “raise”
is a shorthand for both “explicit raise” and “reraise”.

If “explicit raise” is given as a parameter, the procedure Ada.Exceptions.Raise_Exception
is automatically added to the list of procedures for both Check and Search, unless it is explicitely
specified as a parameter in a rule; and similarly Ada.Exceptions.Reraise_Occurrence is added
for “reraise”. This way, it is possible to consider them as reporting procedures for Check (for
example) and not for Search.

A handler where all exceptions are uncontrolled is not controlled at all (i.e. it is allowed
to be non reporting). Otherwise, the rule reports if the handler does not contain at least one

Chapter 5: Rules reference 83

of the <report-item> in each possible path of the handler. If the <report-item> appear only in
if or case statements, but not in all possible paths, or if they appear only in the body of loop
statements, the rule will issue a message asking for a manual verification, since it cannot be
statically determined whether the proper treatment happens in every case.

Note that the purpose of this rule is to require the reporting calls to be “eye-visible”, i.e.
textually written in the exception handler. For example, the rule will accept a call to a procedure
inside the sequence of statements of a package body declared in some inner block; however, it will
not accept the same call if it is in the sequence of statements of a package instantiation (unless
the generic package is itself mentionned as reporting), because the call is not “eye-visible”. For
the same reason, a call to a reporting function which happens as the default value of an omitted
parameter in some other call will not be accepted.

This rule can be given once for each of check, search and count. This way, it is possible to
have a level considered a warning (search), and one considered an error (check).

Ex:

-- Make an error if exception is not reraised and does not call

-- Reports.Trace, but make it only a warning if the exception is an

-- IO exception or Constraint_Error:

check silent_exceptions (not ada.io_exceptions,

not standard.constraint_error,

raise,

reports.trace);

search silent_exceptions (raise, reports.trace);

-- check handlers that do not reraise the exception, except for

-- IO exceptions:

check silent_exceptions (not Ada.IO_Exceptions, reraise);

-- Same for predefined exceptions, except Constraint_Error:

check silent_exceptions (not Standard, with Standard.Constraint_Error,

reraise);

-- Same for all exceptions named User_Error, wherever they are declared,

-- and no others

check silent_exceptions (with all User_Error, reraise);

-- Same for "when others" handlers

check silent_exceptions (with others, reraise);

5.46.3 Limitations

Currently, “return” includes all return statements. It would be nice to separate function re-
turns from procedure or accept returns. This is expected to be done in some future version of
AdaControl.

There are two cases that are not statically checkable, and thus may not be identified by
this rule: if an exception is raised in an inner block statement and handled locally, and if the
exception handler aborts the current task.

If a reporting function is given, there are a few cases where the calls will not be recognized:

• inside a pragma

• in a representation clause

• in a code statement (i.e. as a field of a machine code instruction)

Chapter 5: Rules reference 84

This limitation is intentional: these are such weird places to call a reporting function that it
seems better to draw attention to it...

5.47 Simplifiable Expressions

This rule controls expressions that can be simplified in various ways.

5.47.1 Syntax

<control_kind> simplifiable_expressions [(<subrule> {, <subrule>})];

<subrule> ::= conversion | logical | logical_false | logical_not |

logical_true | parentheses | range

5.47.2 Action

Without parameters, all kinds of simplifiable expressions are controlled; otherwise, the controlled
expressions depend on the subrule:

• “conversion” controls type conversions where the expression is of a universal type (a litteral
or named number), or where the target subtype is either the same as the expression’s
subtype, or the first named subtype of the expression.

• “logical true” controls redundant boolean expressions of the form <expr> = True (or /=),
and “logical false” does the same for comparisons with false.

• “logical not” controls not operators whose argument is a comparison (which could be in-
verted).

• “logical” is the same as specifying “logical true”, “logical false” and “logical not”.

• “parentheses” controls unnecessary parentheses like those surrounding the expression of an
assignment, an “if” or a “case” statement, or those that are not required by operators
precedence rules.

• “range” controls expressions of the form T’First .. T’Last that should be T’range (or
even simply T).

This rule can be given at most once for each subrule.

Ex:

search simplifiable_expressions (parentheses);

check simplifiable_expressions (range, logical);

5.47.3 Tips

There are cases where parentheses may seem unnecessary, but are (purposedly) not reported by
this rule. Consider for example:

X := A + (B + C);

Removing the parentheses would change the expression to mean:

X := (A + B) + C;

If the "+" operator has be redefined and is no more associative, this would actually change
the meaning of the program. In a less contrieved example, note that:

X mod (A*B)

is not the same as:

X mod A * B

For these reasons, and to make the rule easier to understand for the user, the rule does not
report unnecessary parentheses between operators of identical priority levels.

Conversion of universal value is never necessary, however there are cases where overloading
resolution may require the conversion to be replaced by a qualification, rather than being simply
removed.

Chapter 5: Rules reference 85

5.48 Simplifiable Statements

This rule controls statements that can be removed or simplified in various ways without changing
the meaning of the program.

5.48.1 Syntax

<control_kind> simplifiable_statements [(<subrule> {, <subrule>})];

<subrule> ::= block | dead | handler | if | if_for_case |

if_not | loop | loop_for_while | nested_path | null

5.48.2 Action

Without parameter, all kinds of simplifiable statements are controlled; otherwise, the controlled
statements depend on the subrule:

• block controls block statements that have no labels, no declarations, and no exception
handlers.

• dead controls dead code, i.e. statements that are statically known to be never executed. This
includes statements that follow a return, requeue, or goto statement, or an exit statement
that is either unconditional or whose condition is statically known to be true. It includes
also while statements and if statements (including elsif paths) whose condition is statically
false, and for loops whose range is statically empty.

• handler controls “trivial” exception handlers, i.e. handlers whose sequence of statements
includes only a single raise statement without an exception name. However, a handler is
not reported if there is also a non trivial handler for others. These examples show the
situation:

exception
when Constraint_Error => -- Reported (no when others)

raise;
end;

exception
when Constraint_Error => -- Reported (trivial when others)

raise;
when others => -- Reported

raise;
end;

exception
when Constraint_Error => -- Not reported (non trivial when others)

raise;
when others =>

Put_Line ("Error");

end;

• if controls if statements with an else path that contains only null statements (and can thus
be removed).

• if_for_case controls usage of if statements that could be replaced by case statements.
An if statement is assumed to be replaceable if it has at least one elsif and all conditions
are comparisons (or membership tests, possibly connected by logical operators) of the same
discrete variable with static values. Typically, this subrule will spot constructs like:

if X = 1 then
...

elsif X = 2 or X = 3 or X = 4 then

Chapter 5: Rules reference 86

...

elsif X >= 5 and X <= 10 then
...

elsif X in 11 .. 20 then
...

else
...

end if;

• if_not controls if statements with an else path and no elsif path, and where the condition
is given in negative form (i.e. it is a not, or a "/=" comparison). Such statements could be
made positive (and thus less error-prone) by interverting the if and else paths.

• nested_path controls paths from if statements that can be moved outside. This happens
if the if has only then and else paths, and either of them ends with a “breaking” statement
(raise, return, exit or goto); in this case, the other path needs not be nested inside the if
statement. However, if both paths end with the same “breaking” statement, no error is
reported. In short, the rule signals the following examples:

if Cond then
return;

else
I := 1;

end if;

if Cond then
I := 1;

else
return;

end if;

because they can be changed to:

if Cond then
return;

end if;
I := 1;

if not Cond then
return;

end if;
I := 1;

The rule will not signal the following example, where both paths end with the same “break-
ing” statement (return), because it would break the symetry of the statement:

if Cond then
return 1;

else
return 2;

end if;

• null controls null statements that serve no purpose and can be removed. Note that if a
null statement carries a label, it is not considered simplifiable.

• loop controls while loop statements where the condition is a plain True, and can thus be
changed to simple loops.

• loop_for_while controls simple loop statements whose first statement is an exit (for the
same loop), and which can therefore be turned into a while loop.

Chapter 5: Rules reference 87

This rule can be given at most once for each subrule.

Ex:

check simplifiable_statements (block, null);

search simplifiable_statements (if);

5.48.3 Tips

loop may seem a strange thing to check, since no Ada programmer is supposed to write this.
However, experience shows that it is a good indicator of code written by people who did not get
proper Ada training. Such code is certainly worth a peer review...

5.49 Statements

This rule controls usage of certain Ada statements.

5.49.1 Syntax

<control_kind> statements (<statement_kw> {, <statement_kw>};

<statement_kw> ::=

any_statement |

abort | accept_return |

assignment | asynchronous_select |

block | case |

case_others | case_others_null |

code | conditional_entry_call |

declare_block | delay |

delay_until | dispatching_call |

effective_declare_block | entry_call |

entry_return | exception_others |

exception_others_null | exit |

exit_expanded_name | exit_for_loop |

exit_outer_loop | exit_while_loop |

for_loop | function_return |

goto | if |

if_elsif | inherited_procedure_call |

labelled | loop_return |

multiple_exits | no_else |

null | procedure_return |

raise | raise_locally_handled |

raise_nonpublic | raise_standard |

requeue | reraise |

selective_accept | simple_loop |

terminate | timed_entry_call |

unconditional_exit | unnamed_block |

unnamed_exit | unnamed_for_loop |

unnamed_loop_exited | unnamed_multiple_loop |

unnamed_simple_loop | unnamed_while_loop |

untyped_for | while_loop

5.49.2 Action

Statement keywords that are Ada keywords control the corresponding Ada statements. The
meaning of other keywords is as follows:

Chapter 5: Rules reference 88

• any_statement controls all statements. This is of course not intended to forbid all state-
ments in a program (!), but counting all statements can be quite useful.

• accept_return controls return statements that return from an accept statement,
entry_return controls return statements that return from a (protected) entry body, and
procedure_return controls return statements that return from a procedure. loop_return
controls return statements that appear inside a loop statement.

• assignment controls all assignment statements.

• asynchronous_select controls the select ... then abort statement. conditional_entry_

call controls the select ... else statement. timed_entry_call controls the select ... or
delay statement. selective_accept controls the regular select statement.

• block controls all block statements, while unnamed_block controls blocks without a name,
declare_block controls blocks with an explicit declare (even if the declarative part is
empty), and effective_declare_block controls blocks with a declarative part that in-
cludes anything else than use clauses and pragmas.

• case controls all case statements.

• case_others controls any when others path in a case statement, while case_others_null
controls only when others paths in a case statement that contain only null statements.

• code controls code statements.

• delay controls only relative delay statements, while delay_until controls absolute delay
until statements.

• dispatching_call controls all dispatching calls. Note that this subrule controls dispatching
procedure calls as well as dispatching function calls, although the latter is technically an
expression and not a statement.

• entry_call controls all entry call statements, including those that are part of a conditional
or timed entry call statement.

• exit controls all exit statements, while exit_for_loop and exit_while_loop control exit
statements that terminate for and while loops, respectively. unconditional_exit controls
exit statements without a when condition. multiple_exits controls loop that have more
than one exit statement. unnamed_loop_exited controls exit statements that terminate
an unnamed loop. exit_outer_loop controls exit statements that exit from an outer loop
(i.e. not the innermost one). exit_expanded_name controls named exit statements where
the name is given as an expanded name.

• exception_others controls any when others exception handler, while exception_others_
null controls only when others exception handlers that contain only null statements.

• if_elsif controls if statements that have at least one elsif.

• for_loop controls all for loops.

• function_return controls return statements from functions. Obviously, return statements
cannot be forbidden in functions; this keyword controls that there is only one return state-
ment in the body of functions, and at most one return statement in each exception handler
of the exception part of functions.

• if controls all if statements.

• inherited_procedure_call controls calls to procedures that have been inherited by a
derived type and not redefined.

• labelled controls statements with a label (true statement labels, not block and loop
names).

• no_else controls if statements that have no else path.

• null controls all null statements.

Chapter 5: Rules reference 89

• raise controls all raise statements.

• reraise controls raise statements in exception handlers that reraise the same exception,
and calls to the Ada.Exceptions.Reraise_Occurrence procedure.

• raise_standard controls raise statements that raise one of the predefined exceptions
(those declared in package Standard). raise_nonpublic controls statements that raise
exceptions that are neither predefined nor defined in the visible part of a package which is
the enclosing library unit of the statement. raise_locally_handled controls statements
that raise an exception which is handled by a handler in the same subprogram body as the
statement.

Note that for these subrules, the exception can be raised either by a raise statement, or
by a call to Ada.Exceptions.Raise_Exception where the raised exception is statically
determinable.

• simple_loop controls simple loops, i.e. those that are neither while nor for loops.

• unnamed_exit controls exit statements without a loop name that exits from a named loop.

• unnamed_for_loop, unnamed_simple_loop, and unnamed_while_loop control loops of the
given kind that are not named.

• unnamed_multiple_loop controls nested loops that are not named (i.e. under this rule,
only loops that contain no inner loop, and are not nested in another loop, are allowed not
to be named). The kind of loop (plain, for, while) is not considered.

• untyped_for controls for loops that use a range without an explicitely named type (i.e. for
I in 1..10 loop). Using a ’Range attribute is OK.

• while_loop controls all while loops.

Ex:

search statements (delay);

check statements (goto, abort);

check statements (case_others_null, exception_others_null);

5.49.3 Tips

It may seem strange to control things like if or case statements, since no coding standard would
prohibit their use. However, this may be useful, especially with “count”, for statistical purposes,
like measuring the ratio of if to case statements.

The plain “raise” subrule controls the raise statement, and only this one. If you want to
check all places where exceptions can be raised, use also the “entities” rule like this:

"all raise": check statements (raise);

"all raise": check entities (Ada.Exceptions.Raise_Exception,

Ada.Exceptions.Reraise_Occurrence);

Other subrules of the “raise” family are more about which kind of exception is being raised,
and therefore control also exceptions raised by calling the procedures from Ada.Exceptions.

“inherited procedure call” controls only procedure calls. For function calls, see rule
Section 5.16 [Expressions], page 50.

5.50 Style

This rules controls usage of various “general” Ada coding style.

5.50.1 Syntax

<control_kind> style;

<control_kind> style (casing_attribute, <casing_kw>);

Chapter 5: Rules reference 90

<control_kind> style (casing_identifier, <casing_kw>);

<control_kind> style (casing_keyword, <casing_kw>);

<control_kind> style (casing_pragma, <casing_kw>);

<control_kind> style (compound_statement);

<control_kind> style (default_in);

<control_kind> style (exposed_literal, <type_kw>, {, <value_place>});

<control_kind> style (formal_parameter_order {, <mode list>});

<control_kind> style (multiple_elements {,<element_kw>});

<control_kind> style (negative_condition);

<control_kind> style (no_closing_name [, <max_lines>]);

<control_kind> style (numeric_literal, [not] <base> [, <block_size>]);

<control_kind> style (parameter_order {, <mode list>});

<control_kind> style (positional_association

{,<context_kw> [,<max_allowed>]{,<entity>}}

| [, <max_allowed>]);

<control_kind> style (renamed_entity);

<casing_kw> ::= uppercase | lowercase | titlecase | original

<context_kw> ::= [not_operator] call | pragma | discriminant |

instantiation | array_aggregate | record_aggregate

<element_kw> ::= [flexible] clause | declaration | statement

<mode_list> ::= <mode> {<mode>}

<mode> ::= in | defaulted_in | access | in_out | out |

type | procedure | function | package

<type_kw> ::= integer | real | character | string

<value_place> ::= <value> | <place>

<value> ::= <integer number> | <real number> | "<pattern>"

<place> ::= constant | exponent | index | number | pragma |

repr_clause | var_init | type

5.50.2 Action

The first parameter specifies which style aspect is to be checked:

• “casing attribute”, “casing keyword”, “casing identifier”, and “casing pragma” control
that attributes (respectively keywords, identifiers, or pragmas) use the appropriate cas-
ing. “original” (which is allowed only for identifiers) means that identifiers must use the
same casing as in their declaration.

• “compound statement” controls that compound statements span at least a minimum num-
ber of lines: 3 for if statements, loop statements, block statements, and accept statements
with a body; 4 for case statements, selective accept statements, and timed entry call state-
ments; and 5 for conditional entry call statements and asynchronous select statements.

• “default in” controls subprograms, entries and generics declarations that omit an explicit
in mode for a parameter. Access parameters are not reported, since an an explicit in is
not allowed in that case.

• “exposed literal” controls the usage of literals (aka “magic values”), that appear outside
of allowed places. The second parameter tells to which kind of literals the rule applies.
The (optional) indicated values that follow are allowed at any place; for strings, they are
regular expressions. See Appendix B [Syntax of regular expressions], page 113. Commonly
allowed values are 0 and 1 for integer literals, 1.0 and 0.0 for real literals and "^$" (the
empty string) for string literals. At most 20 values of each kind may be specified. In ad-
dition, one or several <place> keyword can be used to specify constructs where any literal
is allowed: “constant” stands for constant declarations, “exponent” for the right parame-

Chapter 5: Rules reference 91

ter of an exponentiation (i.e. "**") function call, “index” for array indexing, “number” for
named number declarations, “pragma” for pragma arguments, “repr clause” for representa-
tion clauses, “type” for type (and subtype) declarations, and “var init” for the initialization
expression of variable declarations. If no <place> is given, it is taken as number, constant,
i.e. any literal is allowed in named numbers and constant declarations.

• “multiple elements” controls clauses, declarations, and statements that do not start on a
line of their own (i.e. when there are more than one of these on the same line). Extra
parameters specify which kind of element to check; if not specified, all kind of elements are
controlled. If “flexible” is specified in front of “clause” (not allowed otherwise), it allows a
use clause to be on the same line as a with clause, provided all packages named in the use
clause are also named in the preceding with clause.

• “negative condition” controls “if” statements with an “else” part and no “elsif”, where the
condition starts with a not, and should therefore preferably be expressed positively.

• “no closing name” controls declarations, like package or subprograms, that allow (but do
not require) repeating the name at the end of the declaration, and where the closing name
is omitted (which is considered bad style in general). However, it can be acceptable to allow
the omission of closing names for very short constructs; therefore this rule has an optional
parameter specifying the maximum number of lines of a construct for which omitting the
closing name is allowed. This rule can be given only once for each of check, search and
count. This way, it is possible to have a length considered a warning (search), and one
considered an error (check). Of course, this makes sense only if the length for search is less
than the one for check. If no length is specified, all occurrences of missing closing names
are signaled.

• “numeric literal” controls the presentation of numeric literals, depending on the base (wich,
as required by Ada rules, must be in the range 2..16). If “not <base>” is specified as the
second parameter, the given base may not be used for based literals. Otherwise, there must
be a third (integer) parameter to specify the size of blocks of digits for that base, i.e. there
must be an underscore character to separate digits every <block size> position. Typically,
<block size> is 3 for base 10, 4 for base 2, etc.

• “parameter order” and “formal parameter order” control the order of the declarations of
parameters or generic formal parameters, respectively. Each parameter of the rule consists
in one or several of the “mode” keywords, and describes, in order, which kind of parameter
is allowed. All modes not specified explicitely are allowed after the ones that are specified.
See examples below.

If no parameter is given, the order for regular parameters is “in” or “access” first, then
“in out”, then “out”, then “defaulted in”. The order for formal parameters is “type” first,
then “in” “defaulted in” and “access”, then “in out”, then “procedure” and “function”,
then “package”.

• “positional association” controls pragmas, discriminants, calls, aggregates, or instantiations
that use positional associations. Extra parameters specify which kind of construct to check;
if not specified, all constructs are controlled. Each of the <context> keywords is optionally
followed by an integer value; if it is specified, it gives the maximum number of associations
that are allowed to be positional, i.e. the rule will trigger only if there are more than the
indicated number of associations. For “pragma”, ”call”, and “instantiation”, entities can
also be specified; such entities are exempted from the rule (i.e. the rule will not control
these entities).See examples below.

For calls, positional association is not reported for operators that use infix notation (since
named notation is not possible); in addition, if the “not operator” modifier is specified
before the “call” keyword (not allowed elsewhere), positional association is never reported
for operators, even if they are called with the syntax of a normal function call (i.e. Pack."+"

Chapter 5: Rules reference 92

(A,B)). Calls to subprograms that are attributes are not reported either, since named
notation is not allowed for them.

• “renamed entity” controls occurrences of identifiers within the scope of a renaming decla-
ration for them; i.e. it enforces that when an entity has been renamed, the original name
should not be used anymore.

Ex:

search style (no_closing_name);

search style (no_closing_name, 5);

check style (casing_identifier, original);

check style (default_in);

check style (numeric_literal, 10, 3);

check style (exposed_literal, integer, 0, 1);

check style (exposed_literal, real, 0.0, 1.0);

-- in parameters (with or without default) and access

-- parameters must be first, then in out parameters, then

-- out parameters. In parameters are allowed last if they

-- have defaults.

check style (parameter_order,

in defaulted_in access,

in_out,

out

defaulted_in);

-- For generics, formal objects must come first, then formal

-- types, then formal subprograms, then formal package:

check style (formal_parameter_order,

in in_out,

type,

procedure function,

package);

-- All positional associations:

check style (positional_association);

-- All positional associations in calls and aggregates:

check style (positional_association, array_aggregate,

record_aggregate, call);

-- All positional associations with more than 3 elements:

search style (positional_association, 3);

-- Positional associations in calls with more than 3 elements,

-- and positional associations in aggregates with more than 4 elements:

search style (positional_association, call, 3,

array_aggregate, 4,

record_aggregate, 4);

-- Positional associations in calls with more than 2 elements (except calls

-- to any subprogram called Put), and in instantiations (except for

-- instantiations of Text_IO subpackages):

Chapter 5: Rules reference 93

search style (positional_association,

call, 2, all put,

instantiation, Ada.Text_IO.Integer_IO,

Ada.Text_IO.Fixed_IO,

Ada.Text_IO.Decimal_IO,

Ada.Text_IO.Float_IO,

Ada.Text_IO.Enumeration_IO);

Without parameter, the rule will control all style aspects with parameter values that corre-
spond to the most commonly used cases, i.e. it is equivalent to the following:

style (no_closing_name);

style (casing_attribute, titlecase);

style (casing_keyword, lowercase);

style (casing_identifier, original);

style (casing_pragma, titlecase);

style (positional_association);

style (default_in);

style (negative_condition)

style (multiple_elements)

style (literal, 10, 3);

style (exposed_literal, integer, 0, 1)

style (exposed_literal, real, 0.0, 1.0);

5.50.3 Tips

Note that operators always follow the casing rule for keywords, even for calls that use the infix
notation (i.e. in "and"(A, B)).

There are two kinds of calls where the rule does not complain about usage of positional
association: infix operator calls (since requiring named notation would not allow infix notation
any more), and calls to subprograms that are attributes (since named notation is not allowed
for these).

For calls, another rule controls positional associations according to the value of parameters
rather than their number: See Section 5.21 [Insufficient Parameters], page 59.

In many cases, badly laid-out compound statements will trigger both the “multiple elements,
statement” and the “compound statement” subrules. For example:

if C then I := 1; end if;

will complain that the assignment is on the same line as the if, and that the if statement
spans less than 3 lines. However, the subrules are not equivalent. For example,

if C then I := 1;

end
if;

will only find that the assignment is on the same line as the if, while

if C then
I := 1; end if;

will only find that the if statement spans less than 3 lines. In most cases, you’ll want to
specify both subrules to ensure proper lay-out.

5.50.4 Limitations

If a predefined operator or an attribute is renamed, the “renamed entity” subrule cannot check
that the original entity is not used in the scope of the renaming. Such cases are detected by the
rule “uncheckable”. See Section 5.53 [Uncheckable], page 94.

Chapter 5: Rules reference 94

5.51 Terminating Tasks

This rule controls tasks that can terminate.

5.51.1 Syntax

<control_kind> terminating_tasks

5.51.2 Action

A task is considered a terminating task if its last statement is not an unconditional loop, or this
if this loop is exited. It is also considered terminating if it contains a selective accept with a
terminate alternative.

Since this rule has no parameters, it can be given only once.

Ex:

check terminating_tasks

5.51.3 Tips

There is still one case where a task terminates, which is not reported by this rule: when a
task is aborted. This is intended, since there are cases (like mode changes) where a logically
non-terminating task is aborted.

If aborts are also to be reported, use the rule “statements (abort)”. See Section 5.49 [State-
ments], page 87.

5.52 Type Initial Values

This rule controls that a special constant is declared together with each type, for example to
serve as a default initial value.

5.52.1 Syntax

<control_kind> type_initial_values [("<pattern>")];

5.52.2 Action

This rule controls types that do not feature an initialization constant declared in the same
declarative part as the type. If no <pattern> is given, any constant is considered an initialization
constant for its type; otherwise, only constants whose name matches the given pattern are
considered initialization constants.

Ex:

check type_initial_values ("^C_Init_");

The above example will ensure that every declared type features a constant of the type whose
name starts with “C Init ”.

5.53 Uncheckable

This rules controls cases where it is not possible to guarantee the accuracy of checks performed
by AdaControl, and where manual inspection may be required.

5.53.1 Syntax

<control_kind> uncheckable [(<subrule> [,<subrule>])];

<subrule> ::= false_positive | false_negative | missing_unit

Chapter 5: Rules reference 95

5.53.2 Action

If the keyword “missing unit” is given, this rule controls missing units, i.e. units given on the
command line that are not found (and therefore not controlled) will result in an usual error
message.

Otherwise, this rule controls constructs that are not static and prevent other rules from being
fully reliable. This rule is special, since it really affects the way other rules behave when they
encounter a statically uncheckable construct. Therefore, if a label is given, the message will
include the label as usual, with an indication of the rule that triggered the message; if no label
is given, the message will include the name of the rule that detected the uncheckable construct,
not “uncheckable” itself.

If the keyword “false negative” is given, the rule will control constructs that could re-
sult in false negatives, i.e. possible violations that would go undected, while if the keyword
“false positive” is given, it will control constructs that could result in false positives, i.e. error
messages when the rule is not really violated. If no keyword is given, both occurrences are
controlled.

As far as statistics are concerned (see Section 4.2.1 [Control kinds and report messages],
page 23), “uncheckable” messages from rules are counted under the corresponding rule’s statistics
(like other messages), but there will be also a count of all “uncheckable” messages under the
rule “UNCHECKABLE”, and also subtotals corresponding to the number of “uncheckables” for
each rule.

This rule can be given only once for each of value of the parameters.

Ex:

check uncheckable (false_negative);

search uncheckable (false_positive);

check uncheckable (missing_unit);

5.53.3 Tips

This rule is especially important when AdaControl is used in safety critical software, since it will
detect constructs that could escape verification. Such constructs should be either disallowed, or
require manual inspection. On the other hand, in casual software, it may lead to many messages,
since for example dispatching calls are uncheckable with many rules.

5.53.4 Limitation

With “missing unit”, the message does not include a reference to a source location, since there is
no place in the source which can be considered as the origin of the error. If you run AdaControl
from GPS, there will always be a separate category (“Uncheckable”) in the locations window,
under which the message will appear, with a file name of “none”. Don’t try to click on the error
message, since GPS will find no file named “none”!

5.54 Units

This rule controls that all necessary units, and only those, are processed by AdaControl.

5.54.1 Syntax

<control_kind> units [(<subrule> [,<subrule>])];

<subrule> ::= unreferenced | unchecked

5.54.2 Action

If the keyword unreferenced is given, the rule controls compilation units that are part of the
set of analyzed units, but withed by no other unit. If the keyword unchecked is given, the rule

Chapter 5: Rules reference 96

controls compilation units that are withed by other unit(s), but not part of the set of controlled
units (except standard units).

This rule can only be given once for each of the subrules.

Ex:

check units (unchecked);

search units (unreferenced);

5.54.3 Tip

The main program will appear as unreferenced, since it is normally part of the controlled units,
and not withed by any other unit. As usual, the corresponding message can be disabled by
putting the comment:

--## rule line off units

on the main program.

5.55 Unnecessary Use Clause

This rule controls use clauses that do not serve any purpose.

5.55.1 Syntax

<control_kind> unnecessary_use_clause [(<subrule> {,<subrule>})];

<subrule> ::= unused | qualified | operator | nested | movable

5.55.2 Action

The rule controls use clauses that can safely be removed, moved, or changed to a use type clause.
This happens in the following cases:

• “unused”: a use clause is given, but no element from the corresponding package is men-
tionned in its scope. The message starts with “unused:”.

In this case, the use clause can safely be removed.

• “qualified”: a use clause is given, but all elements from the corresponding package are
refered to using a qualified name (i.e. prefixed by the name of the package). The message
starts with “all uses qualified:”.

In this case, the use clause can safely be removed, but you may want to keep it for docu-
mentation purposes, since the package is actually used within this scope.

• “operator”: a use clause is given, but the only elements that do not use a qualified name
are operators. The message starts with “only used for operators:”.

In this case, and except for some pathological cases (definition of operators that are not
primitive operations of the corresponding type), the use clause can be replaced by one or
several use type clause(s).

• “nested”: a use clause is given within the scope of an enclosing use clause for the same
package. The message tells the location of the other use clause.

If you also have a message that the outer use clause is unnecessary, this means that all
references to the package appear inside the inner use clauses, and that the outer one can
be removed. If not, you can either remove the inner use clauses, or remove the outer one
and add more local use clauses where necessary.

• “movable”: a use clause is given in a package specification, but all uses are from the
corresponding body. The message starts with “use clause can be moved to body:”.

In this case, the use clause can safely be moved to the body, unless it appears in a library
package, and there are unqualified references to its elements from child units.

Chapter 5: Rules reference 97

If no parameter is given, all cases are controlled, otherwise only cases corresponding to the
specified keyword(s) are controlled. This rule can be given only once for each value of the
parameters.

Ex:

remove: search unnecessary_use_clause (unused);

use_type: check unnecessary_use_clause (operator);

5.55.3 Tip

This rule checks only usage of use clauses. The rule “reduceable scope” can be used to check
that use clauses do not span unnecessarily to wide a scope. See Section 5.42 [Reduceable Scope],
page 77.

5.55.4 Limitations

There are some rare cases where the rule may signal that a use clause is not necessary, where it
actually is. There is no risk associated to this since if you remove the use clause, the program
will not compile.

The first one comes from a limitation of the ASIS standard: if the only use of the use clause
is for making the “root” definition of a dispatching call visible.

The second one comes from a limitation in ASIS-for-Gnat. This happens when the only use
of the use clause is for making an implicitely declared operation (an operation which is declared
by the compiler as part of a type derivation) visible, and when:

• the operation is the target of a renaming declaration;

• or the operation is passed as an actual to a generic instantiation;

• or all operands of the operation are universal (i.e. untyped).

Since these problems come from intrinsic limitations of ASIS, there is nothing we can do
about it. When this happens, you can disable the unnecessary use clause rule using the line (or
block) disabling feature. See Section 4.2.4 [Disabling controls], page 25. Note that for the third
alternative of the second case, you can also qualify one of the parameters, so it is not universal
any more.

5.56 Unsafe Paired Calls

This rule controls usage of calls to operations that are normally paired (like P/V operations)
and do not follow a "safe" coding pattern.

5.56.1 Syntax

<control_kind> unsafe_paired_calls

(<opening procedure>, <closing procedure> [, <lock type>]);

<opening procedure> ::= <entity>

<closing procedure> ::= <entity>

<lock type> ::= <entity>

5.56.2 Action

The following explanations are given in terms of “locks” since this is the primary use of this
rule, however the rule can be used for any calls that need to be properly paired.

The rule can deal with three different kinds of locks:

• abstract state machines: There is no “lock” object, locking is done directly inside the
procedures. The <lock type> parameter of the rule must not be provided in that case.

Chapter 5: Rules reference 98

• object abstract data types: The procedure operates on an object (generally of a private type)
representing the “lock” object, passed as an “in out” parameter. The third parameter must
be the corresponding type, and the rule will control that all matching pairs of calls refer
statically to the same variable.

• reference abstract data types: The procedure operates on a reference that designates the
“lock” object, passed as an “in”parameter. The third parameter must be the corresponding
type, which must be discrete or access, and the rule will control that all matching pairs
of calls refer statically to the same value (for discrete types) or to the same constant (for
access types).

As usual, the whole syntax for entities is allowed for <entity>. See Appendix A [Specifying
an Ada entity name], page 110.

The "safe" coding pattern is defined as follows:

• A call to the first procedure is the first statement of a handled sequence of statements;

• A call to the second procedure is the last statement of the same handled sequence of
statements;

• Corresponding calls of a pair use the appropriate value for the “lock” parameter (if any),
as explained above.

• There is no other call to either operation in the statements of the handled sequence of
statements, except in nested blocks or accept statements; calls in such inner statements
shall not reference the same values or variables as outer ones.

• There is an exception handler for "others" in the handled sequence of statements.

• Every exception handler of the handled sequence of statements includes a single call to the
second operation, using the appropriate value or variable for the lock parameter.

Typically, the “safe” pattern corresponds to the following structures:

-- Abstract state machine

begin
P;

-- Do something

V;

exception
when others =>

V;

-- handle exception

end;

-- Object abstract data type

declare
My_Lock : Lock_Type;

begin
P (My_Lock);

-- Do something

V (My_Lock);

exception
when others =>

V (My_Lock);

-- handle exception

end;

-- Reference abstract data type

Chapter 5: Rules reference 99

declare
Lock_Ptr : constant Lock_Access := Get_Lock;

begin
P (Lock_Ptr);

-- Do something

V (Lock_Ptr);

exception
when others =>

V (Lock_Ptr);

-- handle exception

end;

Ex:

check unsafe_paired_calls (Semaphore.P, Semaphore.V, Semaphore.Lock_Access);

5.56.3 Tips

If the <Lock type> parameter is provided, both procedures must have a single parameter of
the given type, it must not correspond to an “out” parameter, and if it corresponds to an “in”
parameter, the type must be discrete or access.

This rule can be specified several times, and it is possible to have the same procedure be-
longing to several rules. For example, if you have a Mask_Interrupt procedure that should be
matched by either Unmask_Interrupt or General_Reset (all declared in package IT_Driver),
you can specify:

check unsafe_paired_calls (IT_Driver.Mask_Interrupt,

IT_Driver.Unmask_Interrupt);

check unsafe_paired_calls (IT_Driver.Mask_Interrupt,

IT_Driver.General_Reset);

Normally, the legality of a rule is checked when the rules file is parsed, and execution does
not start if there is any error. However, the legality of the provided type can be checked only
during the analysis. If the type is incorrect for some reason, a proper error message is issued
and execution stops immediately.

5.56.4 Limitation

Due to a weakness of the ASIS standard, dispatching calls are not considered. Especially,
this means that the <Lock type> cannot be class-wide. Such calls are detected by the rule
“uncheckable”. See Section 5.53 [Uncheckable], page 94.

Due to a size limitation of internal data structures, this rule can be specified at most 32
times.

5.57 Unsafe Unchecked Conversion

This rule controls unchecked conversions between types which are not statically known to have

identical sizes.

5.57.1 Syntax

<control_kind> unsafe_unchecked_conversion

5.57.2 Action

This rule controls instances of Unchecked_Conversion between types where the following con-
ditions are not met:

• A size clause has been specified for both types

Chapter 5: Rules reference 100

• Both sizes are equal

Moreover, a special message is given if any of the types is a class-wide type (certainly a very
questionable construct!).

Ex:

check unsafe_unchecked_conversion

5.57.3 Limitation

There are cases where a size clause is given for a type, but AdaControl is unable to evaluate it.
This happens especially if the size clause refers to a size attribute of a predefined type, like:

for T’Size use Integer’size;

This can lead to false positives (i.e. detection of instantiations of Unchecked_Conversion
that are actually OK. Such cases are detected by the rule “uncheckable”. See Section 5.53
[Uncheckable], page 94.

5.58 Usage

This rule controls how certain entitities (variables, constants, types, procedures, functions, ex-

ceptions, tasks, protected objects, and generics) are used.

5.58.1 Syntax

<control_kind> usage

(variable|object {,[not] <location> | read | written | initialized});

<control_kind> usage

(constant {,[not] <location> | read});

<control_kind> usage

(type {,[not] <location> | used});

<control_kind> usage

(procedure {,[not] <location> | called});

<control_kind> usage

(function {,[not] <location> | called});

<control_kind> usage

(exception {,[not] <location> | raised | handled});

<control_kind> usage

(task {,[not] <location> | called | aborted});

<control_kind> usage

(protected {,[not] <location> | called});

<control_kind> usage

(generic {,[not] <location> | instantiated});

<control_kind> usage

(all {,[not] <location>});

<location> ::= from_visible | from_private | from_spec

5.58.2 Action

The first parameter defines the class of entities to be controlled. “object” stands for both
“constant” and “variable”, “type” stands for both types and subtypes, and “all” stands for all
classes.

If only one parameter is given, usage of all entities belonging to the indicated class are
reported . Otherwise, other parameter(s) are keyword that restrict the kind of usage being
controlled.

Chapter 5: Rules reference 101

“[not] from visible”, “[not] from private”, and “[not] from spec” restrict entities being
checked to those that appear (or not) in (generic) package specifications, in the visible part,
in the private part, or in any part, respectively. Other keywords carry their obvious meaning,
and are allowed only where appropriate. The rule will output the information only for objects
that match all the conditions given. A combination of parameters can be given only once for
each of “check”, “search”, and “count”.

The report includes the kind of unit that declares the entity (normal unit, instantiation,
or generic unit), the part where it is declared (visible or private) if it is declared in a (generic)
package, and whether the entity is known to be initialized, read, written, raised, handled, called,
or aborted, depending on the entity’s class. Some combinations give an extra useful message
(for example, a variable which is initialized and read but not written will produce a “could be
declared constant” message).

Variables of an access type and variables of an array type whose components are of an access
type (or arrays of an access type, etc.) are always considered initialized, since they are initialized
to null by the compiler.

Variables that cannot be assigned to (i.e. variables of an array type with some null dimension,
or variables of a discrete type whose range includes no values) are specially recognized as “pseudo-
constants”: there is no message that they are not written to (since it is not possible), but there
is an indication that they are pseudo-constants.

The subrules “procedure” and “function” check only regular subprograms, not protected
ones. On the other hand, the subrule “protected” controls all calls to any protected subprogram
or entry.

Exceptions raised by calling Raise_Exception and tasks aborted by calling Abort_Task are
properly recognized as exceptions being raised and tasks being aborted, respectively.

In the case of entities declared in generic packages, the rule will report on usage of the entities
for each instantiation, as well as on global usage for the generic itself. Usage for an instantiation
will include usage in the generic itself (i.e. if the generic writes to a variable, the variable will
be marked as “written” for each instantiation). Usage for the generic itself is the union of all
usages in all instantiations (i.e., if a variable from any instantiation is written to, the variable
from the generic will be marked as written). Therefore, if the rule reports that a variable in a
generic package can be declared constant, it means that no instance of this variable from any
instantiation is being written to. But bear in mind that this can be trusted only if all units from
the program are analyzed. See [limitation], page 102.

Note that usage of entities whose declaration is not processed (like, typically, elements de-
clared in standard packages like Ada.Text_IO), is not reported. For the same reason, it is not
possible to control usage of predefined operators (since they have no declaration).

Ex:

-- No variable in package spec; check usage otherwise

Package_Variable: check usage (variable, from_spec);

Constantable : search usage (variable, not from_spec, read,

initialized, not written);

Uninitialized : check usage (variable, not from_spec, read,

not initialized, not written);

Removable : search usage (object, not from_spec, not read);

-- Check exceptions that are never raised

-- generics that are never instantiated

-- and protected objects that are never called

check usage (exception, not raised);

check usage (generic, not instantiated);

Chapter 5: Rules reference 102

check usage (protected, not called);

-- Find how many tasks are declared, and report those

-- that may be aborted

count usage (task);

check usage (task, aborted);

5.58.3 Tips

Constants that are never used, exceptions that are never raised or handled, tasks that are never
called, etc. are suspicious. Moreover, some useful compiler warnings (like those about variables
that should be declared constants) are not output for variables declared in library packages, and
even in some other contexts (at least with GNAT). This rule can check these kind of things,
project wide.

Some of these checks make sense only for entities declared in package specifications; for
example, variables are often discouraged in package specifications, or need at least some extra
control. That’s why it can be useful to restrict some checks to package specifications.

Note that an unspecified parameter in a rule stands for two rules (positive and negative form
of the missing parameter). I.e.:

search usage (variable, from_spec, read, written);

is the same as:

search usage (variable, from_spec, read, written, initialized);

search usage (variable, from_spec, read, written, not initialized);

Therefore, the following example will complain on the second line that the rule has already
been given for this combination of parameters:

search usage (variable, from_spec, read, written);

search usage (variable, from_spec, read, written, not initialized);

Note that the notion of constants for this rule includes named numbers.

5.58.4 Limitations

The report of this rule is output at the end of the run, and is meaningful only for the units that
have been processed; i.e., if it reports “variable not read”, it should be understood as “not read
by the units given”. In order to have meaningful results, it is therefore advisable to use this rule
on the complete closure of the program.

An exception can be raised by passing its ’Identity to a procedure that will in turn call
Raise_Exception (and similarly for Abort_Task). These cases are not statically determinable,
and therefore not recognized by AdaControl. However, these cases can be identified by searching
the use of the ’Identity attribute with the following rule:

check entity (all ’Identity);

If an object is the prefix of a ’Access, ’Unchecked_Access, or ’Address attribute, it can
be used through the access (or address) value in ways that are not statically analyzable. The
same happens if objects are targets of dynamic renamings. Such cases are detected by the rule
“uncheckable”. See Section 5.53 [Uncheckable], page 94.

Due to a weakness of the ASIS standard, usages of variables used as parameters to dispatching
calls are ignored. This limitation will be removed as soon as we find a way to work around this
problem, but the issue is quite difficult!

5.59 Use Clauses

This rule controls usage of use clauses.

Chapter 5: Rules reference 103

5.59.1 Syntax

<control_kind> use_clauses

[([<subrule>,] <package name> {, <package name>})];

<subrule> ::= local | global

5.59.2 Action

The rule controls every useclause, except those that name one of the mentioned packages. It
is therefore possible to allow use clauses just for certain packages. If the keyword “global”
is given, only use clauses that appear in context clauses (i.e. together with the with clauses)
are controlled; if the keyword “local” is given, only use clauses that appear as declarations are
controlled. If no “local” or “global” is given, all use clauses are controlled.

This rule can be given at most once for each of check, search and count. This way, it is
possible to have a level considered a warning (search), and one considered an error (check).

Ex:

-- Global use clauses are disallowed, local ones only for IO:

check use_clauses (global);

check use_clauses (local, Ada.Text_IO, Ada.Wide_Text_IO);

5.60 With Clauses

This rule controls with clauses that should be removed or moved to a better place.

5.60.1 Syntax

<control_kind> with_clauses [(<subrule> [, <subrule>])];

<subrule> ::= multiple_names | reduceable | inherited

5.60.2 Action

The parameters are subrule keywords that determine which kind of control is performed:

• multiple_names controls any with clause that mentions more than one unit name.

• reduceable reports:

• Redundant with clauses, i.e. clauses given more than once for the same unit. This
includes the case where the same with clause is given in a specification and the corre-
sponding body, and the case of renamings of a same unit (i.e. Text_IO and Ada.Text_

IO). Note that giving a with clause in a unit, and repeating it in a child unit (or
subunit) is not considered redundant.

• Unused with clauses, i.e. when nothing from the withed unit is referenced in the
corresponding unit. Use of a package name in a use clause is not considered a usage of
the package. The rule signals when a withed unit is not used in a unit, but used in one
or more of its subunits. If an unused with clause is given on a package specification,
the message reminds that it migh be useful for child units.

• Moveable with clauses, i.e. when the withed unit is not used in the specification, but
only in the body, and should be moved to the body.

• inherited controls child units and subunits that reference a unit which is not directly
withed, i.e. when withed only from a parent (or enclosing) unit. Although Ada rules imply
that a with clause carries on to child units and subunits, it can be considered better practice
to ensure that every compilation unit withes directly the units it needs.

Each of the keywords can be given at most once. If no keyword is given, both reduceable

and inherited are assumed.

Ex:

Chapter 5: Rules reference 104

check with_clauses (multiple_names, reduceable);

search with_clauses (inherited);

5.60.3 Tips

A with clause can safely be removed if it is unused, and no child unit (or subunit) reports that
the unit is inherited.

Chapter 6: Examples of using AdaControl for common programming rules 105

6 Examples of using AdaControl for common
programming rules

In most projects, there are programming rules that define the way a program should be written.
AdaControl performs controls, i.e. it finds occurrences of certain kinds of constructs. In this
chapter, we give examples of commonly found programming rules, and how the corresponding
controls can be written.

6.1 Migrating from Gnatcheck

The file gnatcheck.aru in directory rules gives the AdaControl equivalents of rules checked by
Gnatcheck. This version of AdaControl covers all Gnatcheck rules. For rules where Gnatcheck
requires a parameter, the AdaControl rule is given for the default value, or with an example
value. Small differences in semantics are indicated by a comment that starts with "Difference:".

This file is not intended to be used directly, but as an example on how to convert Gnatcheck
rules into AdaControl rules. Note that in many cases, AdaControl is much more general than
Gnatcheck. The file follows as strictly as possible the rules as defined by Gnatcheck, but if you
are migrating from Gnatcheck to AdaControl, you may want to use the more powerful forms
provided by AdaControl.

6.2 Rules files provided with AdaControl

The rules directory provides also rules files that can be sourced to enforce some commonly
encountered general rules.

Identifiers from Standard shall not be redefined

Use file no_standard_entity.aru.

Identifiers from System shall not be redefined

Use file no_system_entity.aru.

Predefined IO packages shall not be used

Use File no_io.aru.

Standard package XXX shall not be used

File no_standard_unit.aru controls usage of all standard packages. Comment out those
that you do want to allow.

Obsolescent features shall not be used

Use file no_obsolescent_features.aru. Not all obsolescent features are controlled, but
most of them (those that are most worth checking) are.

Gnat specific attributes shall not be used

Use file no_gnat_attribute.aru

Features from annex X shall not be used

Use file no_annex_X.aru.

The Ravenscar profile shall be enforced

Use file ravenscar.aru.

Chapter 6: Examples of using AdaControl for common programming rules 106

Note that not all of the restrictions of the Ravenscar profile are currently controlled, but many
are, and we expect later releases of AdaControl to increase the number of controlled features. In
some cases (like “Detect Blocking”), AdaControl does a better job than the profile, since it can
detect statically situations that the profile only requires to be detected at run-time. The rule file
is also slightly more restrictive than the profile; for example, the restriction “no task allocation”
only disallows task allocators, while this rule file controls the declaration of access types on tasks.

NASA coding guidelines shall be enforced

Use file nasa.aru. This file is an example of how to convert guidelines (available from
http://fsw.gsfc.nasa.gov/gds/code_standards_ada.pdf) into an AdaControl rules file.

Ada 83 unit names shall not be used (i.e. use Ada.Text_IO, not Text_IO)

Use file no_83_unit_name.aru.

New reserved words of Ada 2005 shall not be used

Use file reserved_2005.aru.

6.3 Automatically checkable rules

Below are examples of rules that can be directly checked by AdaControl.

Goto statement shall not be used

check statements (goto);

Short circuit forms should be preferred over corresponding logical operators

Use_Short_Circuit: search expressions (and, or);

Aggregates should be used for full assignments to structured variables, unless it is a record with
a single component

check multiple_assignments (groupable, given 2, ratio 100);

All loops that contain exit statements must be named, and the name must be given in the exit
statement

check statements (unnamed_loop_exited);

check statements (unnamed_exit);

All type names must start with “T ”

check naming_convention (type, "^T_");

All program units must repeat their name after the “end”

check style (no_closing_name);

Pragma Suppress is not allowed

check pragmas (suppress);

Ada tasking must not be used

http://fsw.gsfc.nasa.gov/gds/code_standards_ada.pdf

Chapter 6: Examples of using AdaControl for common programming rules 107

check declarations (task);

“=” and “/=” shall not be used between real types

check expressions (real_equality);

All tasks must provide an exception handler that calls “Failure” in the case of an unhandled
exception

check exception_propagation (task);

check silent_exceptions (failure);

Unchecked Conversion shall not be used

check entities (ada.unchecked_conversion);

No global variable shall be declared in the visible part of a package specification

check usage (variable, from_spec);

Predefined numeric types of the language shall not be used

check entities (standard.Integer,

standard.short_integer,

standard.long_integer,

standard.Float,

standard.short_float,

standard.long_float);

Access to subprograms shall not be used

check declarations (access_to_sp);

Abort statements shall not be used

check statements (abort);

There shall be only one instantiation of Ada.Numerics.Generic Elementary Functions for each
floating point type

-- Put a --##RULE LINE OFF GEF

-- for the one which is allowed

GEF: check Instantiations (Ada.Numerics.Generic_Elementary_Functions);

A local item shall not hide an outer one with the same name

check Local_Hiding;

There shall be no IOs in exception handlers

check entity_inside_exception (ada.Text_IO.put, ada.Text_IO.put_line,

ada.Text_IO.get, ada.Text_IO.get_line);

Note that this checks for all overloaded procedures, but only those dealing with characters
and strings (those defined directly within Ada.Text IO). If the names “get” and “put” are not
used for anything else than IOs, a more general form can be given as:

Chapter 6: Examples of using AdaControl for common programming rules 108

check entity_inside_exception (all get, all put,

all get_line, all put_line);

This will check that no entity with the corresponding names appear in exception handlers.

Exceptions shall not be used

No_Exception: check declarations (exception, handlers);

No_Exception: check statements (raise);

No_Exception: check entities (Ada.Exceptions);

This will check that no exception is declared, no exception handler is provided, and no
exception is raised, not even through the services of the package Ada.Exceptions.

No procedure exported to C shall propagate exceptions

check exception_propagation (interface, C);

There shall be no Unchecked Conversion to or from Address

check instantiations (ada.unchecked_conversion, system.address);

check instantiations (ada.unchecked_conversion, <>, system.address);

There shall be no use clause except for Text IO

check use_clauses(ada.text_IO);

Use explicit list of values in case statements rather than “when others”if the “when others”
would cover less than 10 values

check Case_Statement(min_others_span, 10);

If a block is more than 20 lines long, it must be named

check Max_Size(unnamed_block, 20);

Exceptions shall not be handled except by main program

check declaration (handlers)

This check will be disabled for the exception handler of the main program.

Each unit has a header starting with a fixed format, and must contain at least 10 lines of
comments

check header_comments (model, "header.txt");

check header_comments (minimum, 10);

The file header.txt contains the required header (as regexps), like:

^--*{50}$

^-- This is a header$

6.4 Rules that need manual inspection

Below are examples of rules that require manual inspection, but where AdaControl can be used
to identify suspicious areas.

All usages of the ’ADDRESS attribute shall be justified and documented

Chapter 6: Examples of using AdaControl for common programming rules 109

search entities (all ’address);

Specifying an address for a variable shall be restricted to hardware interfacing

search representation_clauses(address);

There shall be no memory leakage

search Allocators;

This rule identifies all allocations, and thus can be used to check that all allocated elements
are properly deallocated.

Appendix A: Specifying an Ada entity name 110

Appendix A Specifying an Ada entity name

A.1 General syntax

Many rules can take Ada entities as parameters. Each time a rule uses the category <entity>, it
refers to an Ada entity that can be specified with the following syntax:

<entity> ::= <full_name> | "all" <simple_name> | "all" <attribute>

<full_name> is the full name of the Ada entity, using normal Ada dot notation (with some
extensions, see below). Full name means that you give the full expanded name, starting from
a compilation unit. This name must be the actual full name, i.e. it must not include any
renaming (otherwise the name will not be recognized). For example, the usual Put_Line must
be given as Ada.Text_IO.Put_Line, not as Text_IO.Put_Line. Predefined elements (Integer,
Constraint_Error) must be given in the form Standard.Integer or Standard.Constraint_
Error, since they are logically declared in the package Standard.

<simple_name> is a single identifier, possibly followed by overloading information. No qual-
ification is allowed.

<Attribute> is an attribute name, including the quote. No overloading information is al-
lowed.

<full_name> designates a single entity or several overloaded entities declared in the same
place (as identified by the prefix), while all <simple_name> designates all identifiers with the
given name in the program, irrespectively of where they appear. all <Attribute> designates
all occurrences of the given attribute, irrespectively of what the attribute applies to.

A utility is provided with AdaControl to help you find the full name of an entity. See
Section 3.8.1 [pfni], page 17. If you are using GPS with AdaControl plug-ins, it can be accessed
directly from the contextual menu. See Section 3.6.2 [Contextual menu], page 14.

A.2 Overloaded names

In Ada, names can be overloaded. This means that you can have several procedures P in package
Pack, if they differ by the types of the parameters. If you just give the name Pack.P as the
<entity>, the corresponding rule will be applied to all elements named P from package Pack. If
you want to distinguish between overloaded names, you can specify a profile after the element’s
name. A profile has the syntax:

"{" [["access"] <type-name>

{ ";" ["access"] <type-name> }]

["return" <type-name>] "}"

You must specify the type name, even if the <entity> declaration uses a subtype of the type;
this is because Ada uses types for overloading resolution, not subtypes. Anonymous access
parameters are specified by putting access in front of the type name. An overloaded name for a
procedure without parameters uses just a pair of empty brackets. If the subprogram is a function,
you must provide the return <type-name> part for the return type of the function. The types
must also be given as a unique name, i.e. including the full path: if the type is T declared in
package Pack, you must specify it as Pack.T. As a convenience, the Standard. is optional for
predefined types, so you can write Standard.Integer as Integer. There is no ambiguity, since
a type is always declared within some construct. Note that omitting Standard works only for
types that are part of the profile used to distinguish between overloaded Ada entities but that
the Ada entity name must always contain Standard if it is a predefined element.

Overloaded names can be also be used with the all <simple_name> form of the <entity>. In
this case, the rule will be applied to all names that are subprograms with the given identifier
and matching the given profile, irrespectively of where they appear.

Appendix A: Specifying an Ada entity name 111

Note that if you use an overloaded name, all overloadable names that are part of the <entity>,
including those of the profile, must use the overloaded syntax. For example, given the following
program

procedure P is
procedure Q (I : Integer) is

...

end Q;

procedure Q (F : Float) is
...

end Q;

begin
...

end P;

If you want to distinguish between the two procedures Q, you must specify them as
P{}.Q{Integer} and P{}.Q{Float} (note the P{} which specifies an overloaded name for a
procedure P without parameters).

The names of entities which can not be overloaded (like package, exception, . . .) must not
be suffixed by braces (e.g. Ada.Text_IO.Put_Line{Standard.String}).

A.3 Enumeration literals

Following normal Ada rules, an enumeration literal is considered a parameterless function. If
you want to distinguish between overloaded enumeration literals, you can use overloaded names
for them. For example, given:

package Pack is
type T1 is (A, B);

type T2 is (B, C);

end Pack;

Ada entities names are:

• Pack.B{return Pack.T1}

• Pack.B{return Pack.T2}

A.4 Operators

AdaControl handles operators (i.e. functions like "+") correctly. Of course, you must specify
such operations using normal Ada syntax: if you define the integer type T in package Pack, an
overloaded name for the addition would be Pack."+"{Pack.T; Pack.T return Pack.T}.

A.5 Attributes

It is also possible to designate attributes, using the normal notation (i.e.
Standard.Integer’First). If the name of an attribute which is a function appears
in a name that uses the overloaded syntax, it is not necessary (and actually not allowed) to
provide its profile, since there is no possible ambiguity in that case. For example, given:

procedure P (I : Integer) is
type T is range 1 .. 10;

begin
...

end P;

You can designate the ’Image attribute for type T as P{Standard.Integer}.T’Image (the
profile of the ’Image function is not given, as would be necessary for a normal function).

Appendix A: Specifying an Ada entity name 112

A.6 Anonymous constructs

There is a special case for elements that are defined (directly or indirectly) within unnamed loops
or block statements. Everything happens as if the unnamed construct was named _anonymous_.
So if you have the following program:

procedure P is
begin

for I in 1..10 loop
declare

J : Integer;

begin
...

end;
end loop;

end P;

You can refer to I as P._anonymous_.I, and to J as P._anonymous_._anonymous_.J.

A.7 Record and protected types components

You can designate the name of a record or protected type component (a “field” name), but
to identify it uniquely, you must precede its name by the name of the type. This is a small
extension to Ada syntax, but it is the simplest and most natural way to deal with this case. For
example, given:

procedure P is
type T is

record
Name : Integer;

end record;
...

The Ada entity name is P.T.Name.

A.8 Formals of access to subprogram types

Similarly, you can designate the formal of an access to subprogram type by prefixing it by the
access type. For example, given:

procedure P is
type T is access procedure (X : Integer);

...

The Ada entity name of the formal is P.T.X.

A.9 Limitation

Due to a limitation of ASIS for Gnat, it is not possible to specify a profile with predefined
operators; predefined operators without a profile work normally.

-- This will not recognize "<" on Standard.Integer:

check entities (Standard."<"{Standard.Integer,

Standard.Integer

return Standard.Boolean});

-- This will correctly recognize all predefined "<":

check entities (Standard."<");

Appendix B: Syntax of regular expressions 113

Appendix B Syntax of regular expressions

The following syntax gives the complete definition of regular expressions, as used by several rules.
It is taken from the specification of the package gnat.regpat, where additional information is
available.

regexp ::= expr

::= ^ expr -- anchor at the beginning of string

::= expr $ -- anchor at the end of string

expr ::= term

::= term | term -- alternation (term or term ...)

term ::= item

::= item item ... -- concatenation (item then item)

item ::= elmt -- match elmt

::= elmt * -- zero or more elmt’s

::= elmt + -- one or more elmt’s

::= elmt ? -- matches elmt or nothing

::= elmt *? -- zero or more times, minimum number

::= elmt +? -- one or more times, minimum number

::= elmt ?? -- zero or one time, minimum number

::= elmt { num } -- matches elmt exactly num times

::= elmt { num , } -- matches elmt at least num times

::= elmt { num , num2 } -- matches between num and num2 times

::= elmt { num }? -- matches elmt exactly num times

::= elmt { num , }? -- matches elmt at least num times

non-greedy version

::= elmt { num , num2 }? -- matches between num and num2 times

non-greedy version

elmt ::= nchr -- matches given character

::= [range range ...] -- matches any character listed

::= [^ range range ...] -- matches any character not listed

::= . -- matches any single character

-- except newlines

::= (expr) -- parens used for grouping

::= \ num -- reference to num-th parenthesis

range ::= char - char -- matches chars in given range

::= nchr

::= [: posix :] -- any character in the POSIX range

::= [:^ posix :] -- not in the POSIX range

posix ::= alnum -- alphanumeric characters

::= alpha -- alphabetic characters

::= ascii -- ascii characters (0 .. 127)

::= cntrl -- control chars (0..31, 127..159)

::= digit -- digits (’0’ .. ’9’)

::= graph -- graphic chars (32..126, 160..255)

::= lower -- lower case characters

::= print -- printable characters (32..127)

Appendix B: Syntax of regular expressions 114

::= punct -- printable, except alphanumeric

::= space -- space characters

::= upper -- upper case characters

::= word -- alphanumeric characters

::= xdigit -- hexadecimal chars (0..9, a..f)

char ::= any character, including special characters

ASCII.NUL is not supported.

nchr ::= any character except \()[].*+?^ or \char to match char

\n means a newline (ASCII.LF)

\t means a tab (ASCII.HT)

\r means a return (ASCII.CR)

\b matches the empty string at the beginning or end of a

word. A word is defined as a set of alphanumerical

characters (see \w below).

\B matches the empty string only when *not* at the

beginning or end of a word.

\d matches any digit character ([0-9])

\D matches any non digit character ([^0-9])

\s matches any white space character. This is equivalent

to [\t\n\r\f\v] (tab, form-feed, vertical-tab,...

\S matches any non-white space character.

\w matches any alphanumeric character or underscore.

This include accented letters, as defined in the

package Ada.Characters.Handling.

\W matches any non-alphanumeric character.

\A match the empty string only at the beginning of the

string, whatever flags are used for Compile (the

behavior of ^ can change, see Regexp_Flags below).

\G match the empty string only at the end of the

string, whatever flags are used for Compile (the

behavior of $ can change, see Regexp_Flags below).

... ::= is used to indication repetition (one or more terms)

Embedded newlines are not matched by the ^ operator. It is possible to retrieve the substring
matched a parenthesis expression. Although the depth of parenthesis is not limited in the regexp,
only the first 9 substrings can be retrieved.

The operators ’*’, ’+’, ’?’ and ’{}’ always match the longest possible substring. They all have
a non-greedy version (with an extra ? after the operator), which matches the shortest possible
substring.

For instance:

regexp="<.*>" string="<h1>title</h1>" matches="<h1>title</h1>"

regexp="<.*?>" string="<h1>title</h1>" matches="<h1>"

’{’ and ’}’ are only considered as special characters if they appear in a substring that looks
exactly like ’{n}’, ’{n,m}’ or ’{n,}’, where n and m are digits. No space is allowed. In other
contexts, the curly braces will simply be treated as normal characters.

Note that if you compiled AdaControl with the String_Matching_Portable package, only
basic wildcards are available, i.e. only “*” and “?” are supported, where “*” matches any string
of character and “?” matches a single character.

Appendix C: Non upward-compatible changes 115

Appendix C Non upward-compatible changes

This chapter is intended to users of a previous version of AdaControl, who want to migrate
rule files to the latest version. Although we understand the burden of non upward-compatible
changes, we consider that making AdaControl more powerful and easier to use is sometimes more
important than strict compatibility. Moreover, in most cases the changes are very straightfor-
ward and can be done easily by hand, or with scripts if many files are involved.

C.1 Migrating from 1.11r4

C.1.1 Expressions

The subrule Real_Equality does not control user-defined equality operators any more. This is
intended to be more of an improvement than an incompatibily.

C.1.2 Special Comments

Since the number of subrules is growing, and do not only address ‘special” comments, this rule
has been renamed to “comments”.

C.2 Migrating from 1.10r10

C.2.1 GPS integration

Due to a bug/feature of the GPS interface, if a units file was specified, it did not reappear later
in the corresponding box of the Switch/AdaControl dialog. This has been fixed, but you must
reenter the units file name in the dialog.

C.2.2 Representation Clauses

The introduction of categories made some subrules syntactically ambiguous or redundant.
In consequence, the subrules “derived record”, “extension record”, and “tagged record” have
been removed, and the subrules “record”, “incomplete record”, and “non contiguous record”
have been renamed as “layout”, “incomplete layout”, and “non contiguous layout” respectively.
Change:

check representation_clause (derived_record);

check representation_clause (extension_record);

check representation_clause (tagged_record);

check representation_clause (record);

check representation_clause (incomplete_record);

check representation_clause (non_contiguous_record);

to:

check representation_clause (new layout);

check representation_clause (extension layout);

check representation_clause (tagged layout);

check representation_clause (layout);

check representation_clause (incomplete_layout);

check representation_clause (non_contiguous_layout);

C.3 Migrating from 1.9r4

C.3.1 Array Declarations

The subrule “Max Length” has been changed to “Length”, with the possibility to specify both
min and max values. Change:

Appendix C: Non upward-compatible changes 116

check array_declarations (max_length, 100);

to:

check array_declarations (length, max 100);

C.3.2 Declarations

The subrule names “initialized record field”, “uninitialized record field”, “initial-
ized protected field”, and “uninitialized protected field” have been changed
to “initialized record component”, “uninitialized record component”, “initial-
ized protected component”, and “uninitialized protected component”, respectively, to
be more consistent with official Ada terminology. Change:

check declarations (initialized_record_field,

uninitialized_record_field,

initialized_protected_field,

uninitialized_protected_field);

to:

check declarations (initialized_record_component,

uninitialized_record_component,

initialized_protected_component,

uninitialized_protected_component);

The subrule “aliased” has been split into “aliased constant” and “aliased variable”. The old
rule controlled both at the same time, but did not control aliased components (there are now
other subrules to that effect). Change:

check declarations (aliased);

to:

check declarations (aliased_constant, aliased_variable);

C.3.3 Default Parameter

The <place> is no more allowed to be “all”, because it was ambiguous with the “all <name>”
syntax of <entity>. If you used “all”, duplicate the control with “calls” and “instantiations”.
Change:

My_label : check default_parameter (all, ...);

to:

My_label : check default_parameter (calls, ...),

check default_parameter (instantiations, ...);

C.3.4 Improper Initialization

By default, variables declared directly within (generic) package specifications and bodies are no
more checked. To get the previous behaviour, add the “package” modifier. Change:

check improper_initialization (variable);

to:

check improper_initialization (package variable);

C.4 Migrating from 1.8r8

C.4.1 CSV(X) format

If the output format is CSV or CSVX, the file name, line number and column number are
generated as three different spreadsheet columns, instead of forming a single message. This
makes it easier to use a spreadsheet program for per-file statistics.

Appendix C: Non upward-compatible changes 117

C.4.2 Default Parameter

Due to the introduction of the “positional” keyword, “not used” is now spelled “not used”.
Change:

check default_parameter (proc, param, not used);

to:

check default_parameter (proc, param, not_used);

C.4.3 Other Dependencies

This rule has been changed into a subrule of the (new) rule “Dependencies”. Change:

check Other_Dependencies (pack1, pack2);

to:

check Dependencies (others, pack1, pack2);

C.4.4 Special Comments

Due to the introduction of another subrule, add “pattern” as the first parameter to the rule.
Change:

check Special_Comments ("TBSL");

to:

check Special_Comments (pattern, "TBSL");

C.4.5 Statements

The “raise” subrule now reports all occurrences of the raise statement, even if another control
is applicable to the same statement.

The “reraise” subrule now reports calls to Ada.Exceptions.Reraise_Occurrence.

The “raise standard” subrule now reports exceptions raised by calls to
Ada.Exceptions.Raise_Exception.

C.5 Migrating from 1.7r9

C.5.1 Case Statement

This rule now allows the specification of both min and max values for each subrule. Subrule
names have been changed accordingly. Change:

check Case_Statement (max_range_span, 5);

check Case_Statement (max_values, 10);

check Case_Statement (min_others_span, 4);

check Case_Statement (min_paths, 6);

to:

check Case_Statement (range_span, max 5);

check Case_Statement (values, max 10);

check Case_Statement (others_span, min 4);

check Case_Statement (paths, min 6);

C.5.2 Max Parameters

This rule has been changed into a subrule of the (new) rule “Parameter Declarations”. Change:

check Max_Parameters (10);

to:

check Parameter_Declarations (Max_Parameters, 10);

Appendix C: Non upward-compatible changes 118

C.6 Migrating from 1.6r8

C.6.1 “message” command

The message is now syntactically a string, and must always be enclosed in double quotes (quotes
were optional in previous versions).

C.6.2 “source” command

If a “source” command is given in a rules file, and the sourced file is given with a relative
path, it is interpreted relatively to the sourcing file (it was interpreted relatively to the current
directory previously). This should make “chained” sourcing easier, since the interpretation does
not depend on where the sourcing file is being called from.

C.6.3 Control Characters

This rule is now called “Characters” and can process other kinds of characters in addition
to control characters. Control characters correspond to the “control” parameter of the rule.
Change:

check control_characters;

to:

check characters (control);

C.6.4 If For Case

This rule has been changed into a subrule of the (new) rule “simplifiable statements”. Change:

check if_for_case;

to:

check simplifiable_statements (if_for_case);

C.6.5 Instantiations

The rule does not print the number of instantiations any more, since the same effect can be
achieved with the “count” control kind.

C.6.6 Local Instantiation

This rule has been removed, since its effect can now be achieved with other rules: the rule
“declarations” to check for local instantiations of any generic, and the rule “instantiations” to
check for local instantiations of specified generics. Change:

R1: check Local_Instantiation;

R2: search Local_Instantiation (Ada.Unchecked_Conversion);

to:

R1: check declarations (local instantiation);

R2: search Instantiations (local Ada.Unchecked_Conversion);

C.6.7 Naming Convention

Quotes are no more optional around patterns.

The <location> modifier is now before the <filter kind> (it was before the pattern previously).
This may require splitting the rule in two in some cases. For example, change:

check naming_convention (object, local "^L_", global "^G_");

to:

check naming_convention (local object, "^L_");

check naming_convention (global object, "^G_");

Appendix C: Non upward-compatible changes 119

C.6.8 No Safe Initialization

The name of this rule has been changed to “improper initialization”, since it now controls other
cases of improper initialization.

C.6.9 Special Comments

Quotes are no more optional around patterns.

C.6.10 Statements

Two subrules of this rule have migrated to the new rule “simplifiable statements” (with slightly
different names). Change:

check statements (unnecessary_null);

check statements (while_true);

to:

check simplifiable_statements (null);

check simplifiable_statements (loop);

C.7 Migrating from 1.5r24

C.7.1 Declarations

The subrule “Formal In Out” has been renamed as “In Out Generic Parameter”, for consis-
tency with the new “In Out Parameter” subrule.

The subrules “renames” and “not operator renames” have been renamed to “renaming” and
“not operator renaming”.

As a consequence of being able to specify the location of any construct, the subrules
“nested function instantiation”, “nested generic function”, “nested generic package”,
“nested generic procedure”, “nested package”, “nested package instantiation”, and
“nested procedure instantiation” have been removed and replaced with the corresponding
general construct (without “nested ”). You can have the same effect by specifying the “nested”
modifier in front of them. I.e., change:

check declarations (nested_generic_function);

to:

check declarations (nested generic_function);

C.7.2 Naming Convention

The <location> keyword is placed before the <Filter Kind> keyword instead of before the <Pat-
tern>, which looks more natural. The “Any” keyword has been removed, since omitting the
<location> keyword has the same effect. Change:

check naming_convention (variable, global "^G_");

check naming_convention (package, any "^Pack_");

to:

check naming_convention (global variable, "^G_");

check naming_convention (package, "^Pack_");

C.7.3 Non Static Constraint

This rule is now called Non Static, since it is no more restricted to constraints. The pa-
rameters “index” and “discriminant” have been changed to “index constraint” and “discrim-
inant constraint”, respectively. Change:

Appendix C: Non upward-compatible changes 120

check non_static_constraint (index, discriminant);

to:

check non_static (index_constraint, discriminant_constraint);

C.7.4 Positional Parameters

This rule has been renamed to Insufficient_Parameters, since it does no more handle the
“maximum” subrule. Controlling positional parameters according to their number is now done
by the rule style (positional_association). Change:

check positional_parameters (maximum, 3);

check positional_parameters (insufficient, 2, Boolean);

to:

check style (positional_association, call, 3);

check insufficient_parameters (2, Boolean);

C.7.5 Real Operator

This rule is no more a rule of its own, it is a subrule of the (new) rule Expressions, whose name
is Real Equality. Change:

check Real_Operators;

to:

check expressions (Real_Equality);

C.7.6 Style

The name of the subrule “casing” has been changed to “casing identifier” since the casing of
attributes and pragmas can now also be checked. The casing style is no more optional.

The name of the subrule “literal” has been changed to “numeric literal” (since characters
and strings are also literals, but are not handled by this subrule).

The subrule “exposed literal” now requires an extra parameter to tell whether it applies to
integer literals, real literals, character literals or string literals. Allowed values are provided after
this parameter, and must of course be of the appropriate type. In short, if you had:

check style (exposed_literal, 0, 1, 0.0, 1.0);

you must change it to:

check style (exposed_literal, integer, 0, 1)

check style (exposed_literal, real, 0.0, 1.0);

The “aggregate” parameter of the subrule “positional association” has been split into “ar-
ray aggregate” and “record aggregate”. For example, change:

check style (positional_association, aggregate);

into:

check style (positional_association, record_aggregate, array_aggregate);

C.8 Migrating from 1.4r20

C.8.1 GPS integration

The XML file used to describe AdaControl features to GPS used to be called adactl.xml. It is
now called zadactl.xml, since GPS processes its initialization files in alphabetical order. This
avoids shuffling the menus when AdaControl support is activated.

Make sure to remove the old adactl.xml file from the GPS plug-ins directory before installing
the new version.

Appendix C: Non upward-compatible changes 121

C.8.2 Declarations

The parameters “access” and “access subprogram” have been changed to “access type” and
“access subprogram type”, for consistency with the new parameters.

C.8.3 Header Comments

A keyword has been added to specify the required number of comment lines. Change:

check Header_Comments (10);

to:

check Header_Comments (minimum, 10);

C.8.4 No Closing Name

This rule is now part of the “style” rule. Change:

check|search|count No_Closing_Name;

to:

check|search|count Style (No_Closing_Name);

C.8.5 Specification Objects

This rule is now part of the “usage” rule. Change:

check|search|count Specification_Objects (<parameters>);

to:

check|search|count Usage (Object, From_Spec, <parameters>);

C.8.6 Statement

Name changed from “statement” to “statements” (added an ’s’), to be consistent with other
rules.

C.8.7 When Others Null

This rule is now part of the “statements” rule. Change:

check|search|count When_Others_Null (case);

check|search|count When_Others_Null (exception);

to:

check|search|count Statements (case_others_null);

check|search|count Statements (exception_others_null);

	Introduction
	Features
	History

	Installation
	Building AdaControl from source
	Prerequisites
	Build with installer (Windows)
	Build with project file
	Build with Makefile
	Build with a compiler other than Gnat
	Testing AdaControl
	Customizing AdaControl

	Installing AdaControl
	Installing support for GPS
	Installing support for AdaGide

	Program Usage
	Command line parameters and options
	Input units
	Commands
	Output file
	Output format
	Output limits
	Project files
	Local disabling control
	Verbose and debug mode
	Treatment of warnings
	Exit on error
	ASIS options

	Return codes
	Environment variable and default settings
	Interactive mode
	Other execution modes
	Getting help
	Checking commands syntax
	Generating a units list

	Running AdaControl from GPS
	The AdaControl menu and buttons
	Contextual menu
	AdaControl switches
	Files
	Processing
	Debug
	Output
	ASIS

	AdaControl preferences
	AdaControl language
	AdaControl help
	Caveat

	Running AdaControl from AdaGide
	Helpful utilities
	pfni
	makepat.sed
	unrepr.sed

	Optimizing Adacontrol
	Tree files and the ASIS context
	Generating tree files manually
	Choosing an appropriate combination of options

	In case of trouble
	Known issues
	AdaControl or ASIS failure

	Command language reference
	General
	Controls
	Control kinds and report messages
	Parameters
	Multiple controls
	Disabling controls
	Block disabling
	Line disabling

	Limitation

	Other commands
	Go command
	Quit command
	Message command
	Help command
	Clear command
	Set command
	Source command
	Inhibit command

	Example of commands

	Rules reference
	Abnormal_Function_Return
	Syntax
	Action
	Tip

	Allocators
	Syntax
	Action
	Tips

	Array_Declarations
	Syntax
	Action
	Tips

	Barrier_Expressions
	Syntax
	Action
	Tips

	Case_Statement
	Syntax
	Action
	Tips
	Limitations

	Characters
	Syntax
	Action
	Limitations

	Comments
	Syntax
	Action
	Tips
	Limitations

	Declarations
	Syntax
	Action
	Tips
	Limitation

	Default_Parameter
	Syntax
	Action
	Tip

	Dependencies
	Syntax
	Action

	Directly_Accessed_Globals
	Syntax
	Action
	Tips
	Limitations

	Duplicate_Initialization_Calls
	Syntax
	Action
	Limitation

	Entities
	Syntax
	Action
	Tips
	Limitation

	Entity_Inside_Exception
	Syntax
	Action

	Exception_Propagation
	Syntax
	Action
	Tips
	Limitations

	Expressions
	Syntax
	Action
	Tips

	Global_References
	Syntax
	Action
	Tips
	Limitations

	Header_Comments
	Syntax
	Action
	Tips
	Limitation

	Improper_Initialization
	Syntax
	Action
	Limitations

	Instantiations
	Syntax
	Action
	Tips
	Limitation

	Insufficient_Parameters
	Syntax
	Action
	Tips

	Local_Hiding
	Syntax
	Action

	Max_Blank_Lines
	Syntax
	Action

	Max_Call_Depth
	Syntax
	Action
	Tip
	Limitations

	Max_Line_Length
	Syntax
	Action

	Max_Nesting
	Syntax
	Action

	Max_Size
	Syntax
	Action

	Max_Statement_Nesting
	Syntax
	Action

	Movable_Accept_Statements
	Syntax
	Action
	Tips

	Multiple_Assignments
	Syntax
	Action
	Tip
	Limitations

	Naming_Convention
	Syntax
	Action
	Tips
	Limitations

	No_Operator_Usage
	Syntax
	Action
	Tips

	Non_Static
	Syntax
	Action
	Limitations
	Tips

	Not_Elaboration_Calls
	Syntax
	Action
	Limitations

	Not_Selected_Name
	Syntax
	Action
	Tip

	Object_Declarations
	Syntax
	Action
	Tip
	Limitation

	Parameter_Aliasing
	Syntax
	Action
	Limitation

	Parameter_Declarations
	Syntax
	Action
	Tips

	Potentially_Blocking_Operations
	Syntax
	Action
	Tips
	Limitation

	Pragmas
	Syntax
	Action
	Tips

	Record_Declarations
	Syntax
	Action
	Tips
	Limitations

	Reduceable_Scope
	Syntax
	Action
	Tips
	Limitation

	Representation_Clauses
	Syntax
	Action
	Limitation
	Tips

	Return_Type
	Syntax
	Action
	Limitations

	Side_Effect_Parameters
	Syntax
	Action
	Limitation

	Silent_Exceptions
	Syntax
	Action
	Limitations

	Simplifiable_Expressions
	Syntax
	Action
	Tips

	Simplifiable_Statements
	Syntax
	Action
	Tips

	Statements
	Syntax
	Action
	Tips

	Style
	Syntax
	Action
	Tips
	Limitations

	Terminating_Tasks
	Syntax
	Action
	Tips

	Type_Initial_Values
	Syntax
	Action

	Uncheckable
	Syntax
	Action
	Tips
	Limitation

	Units
	Syntax
	Action
	Tip

	Unnecessary_Use_Clause
	Syntax
	Action
	Tip
	Limitations

	Unsafe_Paired_Calls
	Syntax
	Action
	Tips
	Limitation

	Unsafe_Unchecked_Conversion
	Syntax
	Action
	Limitation

	Usage
	Syntax
	Action
	Tips
	Limitations

	Use_Clauses
	Syntax
	Action

	With_Clauses
	Syntax
	Action
	Tips

	Examples of using AdaControl for common programming rules
	Migrating from Gnatcheck
	Rules files provided with AdaControl
	Automatically checkable rules
	Rules that need manual inspection

	Specifying an Ada entity name
	General syntax
	Overloaded names
	Enumeration literals
	Operators
	Attributes
	Anonymous constructs
	Record and protected types components
	Formals of access to subprogram types
	Limitation

	Syntax of regular expressions
	Non upward-compatible changes
	Migrating from 1.11r4
	Expressions
	Special_Comments

	Migrating from 1.10r10
	GPS integration
	Representation_Clauses

	Migrating from 1.9r4
	Array_Declarations
	Declarations
	Default_Parameter
	Improper_Initialization

	Migrating from 1.8r8
	CSV(X) format
	Default_Parameter
	Other_Dependencies
	Special_Comments
	Statements

	Migrating from 1.7r9
	Case_Statement
	Max_Parameters

	Migrating from 1.6r8
	``message'' command
	``source'' command
	Control_Characters
	If_For_Case
	Instantiations
	Local_Instantiation
	Naming_Convention
	No_Safe_Initialization
	Special_Comments
	Statements

	Migrating from 1.5r24
	Declarations
	Naming_Convention
	Non_Static_Constraint
	Positional_Parameters
	Real_Operator
	Style

	Migrating from 1.4r20
	GPS integration
	Declarations
	Header_Comments
	No_Closing_Name
	Specification_Objects
	Statement
	When_Others_Null

